# WKU Mathematics Faculty Publications

**Bold text** represents WKU Mathematics faculty, and * bold italics text* represents former/current WKU Mathematics students. Some disciplines in mathematics
recognize author order as a representation of contribution to the paper, while other
simply list authors alphabetically.

# 2020

Abdisatarov, B., Ilhom, S., Kholikov, K._{,} Loomis, D., Dobrokhotov, V., **Khenner, M.**, and Er, A. O., “Morphology and structure of Pb thin films grown on Si(111) by pulsed
laser deposition”,** ***Applied Physics A***126**, 237 (2020).

**Atici, F. M.**, * Dadashova, K.*, and Jonnalagadda, J., Linear fractional order h-difference equations, Special Issue
honoring Professor Johnny Henderson, International Journal of Difference Equations,
Volume 15, Number 2, pp. 281-300 (2020).

**Atici, F. M.**, **Nguyen, N.**, * Dadashova, K.*,

*, and Koch, G., Pharmacokinetics and Pharmacodynamics Models of Tumor Growth and Anticancer Effects in Discrete Time, Computational Mathematical Biophysics, 8(2020), 114-125.*

**Pedersen, S.****Atici, F. M.** and * Zhoroev, T.*, Controllability and observability of time-invariant linear nabla fractional systems,
Fractional Differential Calculus, 10(2020), no. 1, 19-39.

Balko, M., **Pór, A.**, Scheucher, M., Swanepoel, K., Valtr, P. Almost-equidistant sets, Graphs Comb. 36,
No. 3, 729-754 (2020).

Bateiha, S., **Autin, M.**, and **Marchionda, H.** (2020). Teaching Style and Attitudes: A Comparison of Two Collegiate Introductory
Statistics Classes. *Journal of Statistics Education*, 28:2,154-164,DOI: 10.1080/10691898.2020.1765710.

**Bhattacharya, T.** and Mohammed, A. On Phragmen-Lindelof type Theorems for k-Hessian equations with
lower order terms. Appeared online 02 May 2020, Journal of Geometric Analysis, https://doi.org/10.1007/s12220-020-00415-0.

**Bhattacharya, T.** and Marazzi, L. A Phragmen-Lindelof property of viscosity solutions to a class of
nonlinear, possibly degenerate, parabolic equations (with L. Marazzi), Rendiconti
di Matematica e delle sue Applicazioni, University di Roma (Sapienza) (7) Vol 41 (2020)
59-104.

* Durham, S.* and

**Richmond, T.**Connected Subsets of a

*n x 2*Rectangle.

*College Mathematics Journal*, Vol. 51 no. 1 (2020) 32-42. https://doi.org/10.1080/07468342.2020.1674597.

**Fortune, N.**, Rasmussen, C., Keene, K. A., Bogart, T., & Dunmyre, J. (2020). Bringing social
justice topics to differential equations via a climate change problem: Identity, power,
access, and achievement. *MathAMATYC Educator*, *11*(3), 26 – 32, 66 – 67. https://amatyc.site-ym.com/page/EducatorSpring2020.

Johnson, E., Andrews-Larson, C., Keene, K. A., Melhuish, K., Keller, R., & **Fortune, N.** (2020). Inquiry and gender inequity in the undergraduate mathematics classroom. *Journal for Research in Mathematics Education*, *51*(4), 504 – 516. https://www.jstor.org/stable/10.5951/jresematheduc-2020-0043.

**Khenner, M.**, *“Electromigration-guided composition patterns in thin alloy films: a computational
study*”, *Surface Science***698, **121611 (2020).

Lischka, A. E., **Gerstenschlager, N.**, & Seat, J. (2020). A journey toward course assessment as a relational practice in
mathematics methods. In C. Edge, A. Standerford, & B. Bergh (Eds.), Textiles and Tapestries:
Self-Study for Envisioning New Ways of Knowing. EdTech Books. Retrieved from https://edtechbooks.org/textiles_tapestries_self_study/chapter_25 (Book Chapter)

**Özer, A. Ö.**, Stabilization results for well-posed potential formulations of a current-controlled
piezoelectric beam and their approximations, Applied Mathematics and Optimization,
(2020).

* Price, D. J.*,

*,*

**Moore, E.****Özer, A. Ö.**, Boundary Control of a 1D Wave Equation by the Filtered Finite Difference Method, Wolfram Demonstrations Project, Published: June 3, 2020.

* Price, D. J.*,

*,*

**Moore, E.****Özer, A. Ö.**(2020) "

__Boundary Stabilization of Euler-Bernoulli and Rayleigh Beam Vibrations__," Wolfram Demonstrations Project, Published: September 23, 2020.

**Richmond, T.** General Topology: An Introduction, ISBN 978-3-11-068656-2 © 2020, 314 + xii pages.
(Book)

Tassell, J., **Gerstenschlager, N. E.**, Szymanski, T., & Denning, S. (2020*)*. Improving mindfulness, mindset, anxiety, and content knowledge in mathematics for
preservice teachers. *School Science and Mathematics, 120*, 333-344*.*

**Zheng, L.** (2020). Introductory Statistics, 1st edition. Kendall Hunt Publishing, Dubuque, IA,
2020 (ISBN: 978-1-7924-2985-9). (Book)

# 2019

**Atici, F. M.**, Atici, M., **Nguyen, N.**, * Zhoroev, T.*, and Koch, G., A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics
models for tumor growth and anti-cancer effects, Computational Mathematical Biophysics,
7(2019), 10-24.

**Atici, F. M.** and * Nguyen, D. M.*, Rank conditions for controllability of discrete fractional time-invariant linear
systems, Journal of Difference Equations and Applications, 25(2019), Issue 6, Special
Issue: Fractional Calculus, Guest Edited by Allan Peterson, 869-881. doi:10.1080/10236198.
2019.1596265.

**Autin, M. A.** and **Gerstenschlager, N. E.** (2019). Battleship and the Negative Hypergeometric Distribution. *Teaching Statistics: An International Journal for Teachers*, 41: 3– 7. https://doi.org/10.1111/test.12160.

* Barnette, B.*, Nichols, W., and

**Richmond, T.**The Number of Convex sets in a Product of Totally Ordered Sets,

*Rocky Mountain Journal of Math.*49 (2) (2019) 369-385. Doi:10.1216/RMJ-2019-49-2-369.

* Bettersworth, Z.* and

**Ernst, C.**(2019), On the Incoherent Nullification of Knots and Links, J. of Knot Theory and Its Ramifications, Vol. 28, No. 05, doi.org/10.1142/S0218216519500330.

**Bhattacharya. T.** and Marazzi, L. A Phragmen-Lindelof property of viscosity solutions to a class of
doubly nonlinear parabolic equations: Bounded Case (with L. Marazzi). Rendiconti Del
Seminario Matematico Della Universit di Padova. Vol 142 (2019), pages 211-259.

**Bhattacharya, T.**, Emamizadeh, B, and Farjudian, A. Existence of Continuous Eigenvalues for a Class
of Parametric Problems Involving the (p; 2)-Laplacian Operator, Acta Applicandae Mathematicae,
vol 165, no 1 (2020) 65-79. Appeared Online Feb 7, 2019, DOI:10.1007/s10440-019-00241-9.

**Clark, D. L.** (2019). Mathematics educators’ perceptions of passing through the gateway of occupational
politicization. In S. Otten, A. G. Candela, Z. de Araujo, C. Haines, & C. Munter,
(Eds.), *Proceeding of the 41 ^{st} annual meeting of the North American Chapter of the International Group for the Psychology
of Mathematics Education* (p. 683). St. Louis, MO: University of Missouri.

Dahane, I., Lazaar, S., **Richmond, T.**, and Turki, T. On Resolvable Primal Spaces, *Quaestiones Mathematicae,* 42 no. 1 (2019) 15-35. https://doi.org/10.2989/16073606.2018.1437093

Diao, Y., **Ernst, C.**, **Por, A.**, and Ziegler, U. (2019), The Ropelengths of Knots Are Almost Linear in Terms of Their
Crossing Numbers, Vol. 28, No. 14, 1850075 doi.org/10.1142/S0218216519500858.

**DuCloux, K. K.** (2019). Secondary Mathematics Teachers’ Overcoming Difficulties in an Online Real
Analysis Course. In Otten, S., Candela, A. G. de Araujo, Z. Haines, A., & Munter,
C. (Eds.). *Proceedings** of the forty-first** annual meeting of the North American Chapter of the International Group for the Psychology
of Mathematics Education*. (pp. 613-614). St. Louis, MO.

**DuCloux, K. K.** (2019). Facilitating mathematical discourse in online learning environments. In Wachira,
P. & Keengwe, J. (Eds.) *Handbook of Research on Online Pedagogical Models for Mathematics Teacher Education.* (pp. 245-256). IGI Global: Hershey, PA.

**DuCloux, K. K.**, et al (2018). *Catalyzing change in high school mathematics: Initiating critical conversations*. National Council of Teachers of Mathematics. Reston, VA (Book)

**Dunkum, M.**, Donnelly, R., * George, C.*, and Schnake, S. “Counting odd numbers in truncations of Pascal's Triangle,” The
Pentagon , 79 (1) (2019), 12-28.

**Dunkum, M.** and Donnelly, R. “The Group Action Tri-cycle Theorem,” The American Mathematical
Monthly, 126 (2) (2019), 179-179.

**Dunkum, M.** and **Lanphier, D.** “Edge integrity of nearest neighbor graphs and separator theorems", Discrete Mathematics
342 no.9 (2019), 2664-2679.

Dunmyre, J., **Fortune, N.**, Bogart, T., Rasmussen, C., & Keene, K. A. (2019). Climate change in a differential
equations course: Using bifurcation diagrams to explore small changes with big effects.
*Community of Ordinary Differential Equations Educators (CODEE) Journal*, *12*(1), 1 – 10. https://scholarship.claremont.edu/codee/vol12/iss1/1.

Eaton, C. D., Callender, H. L., Dahlquist, K. D., LaMar, M. D., Ledder, G., **Schugart, R. C.** “Rule of Five” Framework for Models and Modeling to Unify Mathematicians and Biologists
and Improve student Learning, *PRIMUS*, 29 (8): 799 – 829. doi: 10.1080/10511970.2018.1489318.

George, P. and **Nguyen, N.** Visualizing music similarity: clustering and mapping 500 classical music composers,
*Scientometrics, *2019, DOI 10.1007/s11192-019-03166-0.

**Gerstenschlager, N. E.** & Strayer, J. F. (2019). Number talks for statistics and probability. Mathematics
Teaching in the Middle School, 24, 362-368.

**Gerstenschlager, N. E.** (2019). Re-envisioning the mathematics teaching practices as the statistics teaching
practices. Statistics Teacher. Can be retrieved from: http://www.statisticsteacher.org/2019/01/02/statistics-teaching-practices/.

**Gerstenschlager, N. E.** & Barlow, A. T. (2019). Transitioning from practicing teacher to teacher leader:
A case study. Teacher Development, 1, 18-35.

**Lanphier, D.** “Determining cuspforms from critical values of convolution L-functions and Rankin-Cohen
brackets", International Journal of Number Theory 15 (7) (2019), 1403-1412.

Lazaar, S., **Richmond, T.**, and Sabri, H. The Autohomeomorphism Group of Connected Homogeneous Functionally
Alexandroff Spaces, *Communications in Algebra*, Vol. 47 no. 9 (2019) 3818-3829. https://doi.org/10.1080/00927872.2019.1570240.

**Nguyen, L.**, Buşe, C., Diagana, T., and O'Regan, D. *Exponential stability for solutions of continuous and discrete abstract Cauchy problems
in Banach spaces*. Electron. J. Differential Equations 2019, No. 78, pp 1-16.

**Özer, A. Ö.**, Uniform boundary observability of semi-discrete finite difference approximations
of a Rayleigh beam equation with only one boundary observation, Proceedings of the
IEEE Conference on Decision and Control (CDC), Nice, France, 2019, 7708-7713 (2019).

**Özer, A. Ö.** and **Khenner, M.** (2019) __An alternate numerical treatment for nonlinear PDE models of piezoelectric laminate__s, Proc. SPIE 10967, Active and Passive Smart Structures and Integrated Systems XII,
109671R-20 pages.

**Özer, A. Ö.** and Morris, K. A. (2019) __Modeling and stabilization of current-controlled piezoelectric beams with dynamic
electromagnetic field__, ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV), (26-8), 1-24.

Rasmussen, C., Dunmyre, J., **Fortune, N.**, & Keene, K. A. (2019). Modeling as a means to develop new ideas: The case of reinventing
a bifurcation diagram. *PRIMUS*, *29*(6), 509 – 526. https://doi.org/10.1080/10511970.2018.1472160.

**Robinson, M.** “Global Behavior in Functional Iteration Problems,” __Journal of the Kentucky Academy of Science__, Volume 80, No. 1, pp. 47-59 (2019).

**Spraker, J.** “Positive Solutions for a fourth order differential inclusion based on the Euler-Bernoulli
equation for a cantilever beam”, Differential Equations and Applications Volume 11
No. 4 Nov. 2019, pp 531 – 541. http://dx.doi.org/10.7153/dea-2019-11-26).

Strayer, J. F., **Gerstenschlager, N. E.**, Green, L. B., McDaniel, S., & Rowell, G. H. (2019). Towards a full(er) implementation
of active learning. Statistics Education Research Journal, 18(1), 63-82. **Resulted
in a Math Ed Podcast (Episode 1907) which can be found at https://www.podomatic.com/podcasts/mathed/episodes/2019-05-07T08_18_52-07_00.

Tassell, J., Novak, E., and **Kessler, B.** “Math Comic Books to the Rescue: Can Wonderguy's Escapades Improve Children's Mathematics
Attitudes?," Technology, Instruction, Cognition, and Learning 11, 259-286 (2019).

**Zheng, L.** (2019). Using mutual information as a cocitation similarity measure. Scientometrics
. DOI https://doi.org/10.1007/s11192-019-03098-9.

**Zheng, L.** and Zheng, H. (2019). Authorship attribution via coupon-collector-type indices. Journal
of Quantitative Linguistics . DOI: 10.1080/09296174.2019.1577939.

Zhuhadar, L., Daday, J., Marklin, S., **Kessler, B.**, and Helbig, T. “Using survival analysis to discovering pathways to success in mathematics,"
Computers in Human Behavior 92, 487-495 (March 2019).

# 2018

**Atici, F. M.** and Yaldiz, H., Refinements on the discrete Hermite-Hadamard inequality, Arab. J.
Math. (Springer) 7 (2018), no. 3, 175-182.

Bárány, I., Fodor, F., Martínez-Pérez, Á., Montejano, L., Oliveros, D., **Pór, A.** a Acknowledgement of priority|-a fractional Helly theorem for boxes, Comput. Geom.
67 (2018), no. 1.

Barlow, A. T., **Gerstenschlager, N. E.**, Strayer, J., Lischka, A., Stephens, D., Hartland, K., & Willingham, J. (2018). Scaffolding
for access to productive struggle. Mathematics Teaching in the Middle School, 23,
202-207.

Diao, Y., **Ernst, C.**, Ziegler, U., and Rawdon, E. J. (2018), The Knot Spectrum of Random Knot Spaces,
New Directions in Geometric and Applied Knot Theory/Ed. Blatt, Reiter, Schikorra,
DeGruyter, pp.205-237, DOI: 10.1515/9783110571493-010.

Diao, Y., **Ernst, C.**, Ziegler, U., and Rawdon, E. J. (2018), Average crossing number and writhe of knotted
random polygons in confinement Reactive and Functional Polymers 131(10) doi.org/10.1016/j.reactfunctpolym.2018.07.028.

Diao, Y., **Ernst, C.**, Ziegler, U., and Rawdon, E. J. (2018), Total curvature and total torsion of knotted
random polygons in confinement. J. Phys. A: Math. Theor, 51(15) DOI: 10.1088/1751-8121/aab1ed.

Du, L., **Khenner, M.**, and Maroudas, D., “Kinetics of nanorings formation on surfaces of stressed thin
films”, *Physical Review Materials***2**, 083403 (2018).

**DuCloux, K.**, **Gerstenschlager, N.**, **Marchionda, H.**, & Tassell, J. (2018). Characterizing prospective mathematics teachers’ productive
struggle. In Venenciano, L., and Redmond-Sanogo, A. (Eds.). *Proceedings of the 45 ^{th} Annual Meeting of the Research Council on Mathematics Learning. *Baton Rouge, LA.

* El-Farrah, M.* and

**Lanphier, D.**“Average orders of subgroups of cyclic groups and values of the Riemann zeta function", The Ramanujan Journal 47 (3) (2018), 547-564.

**Ernst, C.** and * Pham, V.* (2018), Loop Numbers of Knots J. of Knot Theory and Its Ramifications, Vol. 27, No.
14, 1850075, doi.org/10.1142/S021821651850075X.

**Gerstenschlager, N. E.** & Barlow, A. T. (2018). Number talks with fraction multiplication. Dimensions in
Mathematics, 38, 6-13.

Hamburger, P., McConnell, R., **Pór, A.**, Spinrad, J., Xu, Z. Double threshold digraphs, 43rd International Symposium on
Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform. 117
(2018), 12pp.

**Khenner, M.** “Modeling solid-state dewetting of a single-crystal binary alloy thin films”, *Journal of Applied Physics***123, **034302 (2018).

**Lanphier, D.** “Duels, truels, gruels, and survival of the unfittest”, in The Mathematics of Various
Entertaining Subjects , Volume 2, Princeton University Press, Princeton, New Jersey
and the National Museum of Mathematics, New York, New York, 2018.

Lazaar, S., **Richmond, T.**, and Sabri, H. Homogeneous Functionally Alexandroff Spaces, Bulletin of the Australian
Mathematical Society, 97 (2) (2018) 331-339*.*https://doi.org/10.1017/S0004972717000934.

Lischka, A., **Gerstenschlager, N. E.**, Stephens, C., Strayer, J. F., & Barlow A. T. (2018). Making Room for Inspecting
Mistakes. Mathematics Teacher, 111, 432-439. **Resulted in a National Council of Teachers
of Mathematics Twitter Chat.

Magazinov, A. and **Pór, A.** An Improvement on the Rado Bound for the Centerline Depth , Discrete Comput. Geom.
59 (2018), no. 2, 477-505.

**Marchionda, H.**, **DuCloux, K.**, **Gerstenschlager, N.**, and Tassell, J. (2018). Preservice math teachers’ perceptions of productive struggle.
Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). *Proceedings of the 40th annual meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education*. Greenville, SC: University of South Carolina & Clemson University.

Molchanov, S., Zhang, L., and **Zheng, L.** (2018). Entropic Moments and Domains of Attraction on Countable Alphabets. Mathematical
Methods of Statistics , 27 (1): 60-70.

Moody, V. R. & **DuCloux, K. K.** (2018). Elementary preservice teachers’ perceived confidence and readiness for teaching
mathematics. In Venenciano, L., and Redmond-Sanogo, A. (Eds.). *Proceedings of the 45 ^{th} Annual Meeting of the Research Council on Mathematics Learning. *Baton Rouge, LA.

**Nguyen, L.**, Buse, C., and O'Regan, D. *Global and local versions for a Phóng Vũ theorem for periodic evolution families in
Hilbert spaces*. Electron. J. Differential Equations 2018, No. 188, pp. 1-12.

**Nguyen, L.**, Buse, C., Khan, A., and Rahmat, G. *Asymptotic Behavior Of Discrete Evolution Families in Banach Spaces.* Applicable Analysis, Vol. 97 (2018), no. 2, 160-178.

**Özer, A. Ö.**, Potential formulation and related stabilization results for a charge or currentcontrolled
piezoelectric smart composite: electrostatic, quasi-static, and fully-dynamic assumptions,
IEEE Transactions on Automatic Control, (64-3) (2018), 989-1002.

**Özer, A. Ö.**, Dynamic and non-dynamic modeling for a piezoelectric smart beam and related preliminary
stabilization results, Evolution Equations and Control Theory, 7-4 (2018), 639–668.

**Özer, A. Ö.**, Exponential stabilization of the smart piezoelectric composite beam with only one
boundary controller, Proceedings of the International Federation of Automatic Control
Conference (51-3) (2018), pp. 80-85.

**Özer, A. Ö.**, Nonlinear modeling and preliminary stabilization results for a class of piezoelectric
smart composite beams, Proceedings of the SPIE on Smart Structures & Nondestructive
Evaluation, Proceedings Volume 10595, Active and Passive Smart Structures and Integrated
Systems XII; 105952C (2018).

* Price, D. L.*, Hennner, V., and

**Khenner, M.**, “Morphologies, metastability and coarsening of quantum nanoislands on the surfaces of the annealed Ag(110) and Pb(111) thin films”,

*Journal of Applied Physics*

**124**, 174302 (2018).

**Richmond, T.** Calculus with Curtains, *College Mathematics Journal*, Vol. 49 no. 5 (2018) 369-370. https://doi.org/10.1080/07468342.2018.1512326.

Spires, H. A., Kerkhoff, S. N., & **Fortune, N.** (2018). Educational cosmopolitanism and collaborative inquiry: A collective case
study with teachers from China and the US. *Teaching Education*, *30*(4), 437 – 454. https://doi.org/10.1080/10476210.2018.1506431.

**Zheng, L.** (2018). A two-step self-evaluation algorithm on imputation methods for missing categorical
data. International Journal of Scientific and Statistical Computing, 7 (1): 1-12.

# 2017

**Atici, F. M.**, Atici, M., * Belcher, M.*, and Marshall, D., A New Approach for Modeling with Discrete Fractional Equations,
Fundamenta Informaticae, 151(2017), 313-324. doi:10.3233/FI-2017-1494.

* Bell, K.* and

**Richmond, T.**Transitions between 4-Intersection Values of Planar Regions

*Applied General Topology*, 18(1) (2017) 183-202. Doi:10.4995/agt.2017.6717.

**Bhattacharya, T.** and Marazzi, L. On the viscosity solutions of eigenvalue problems for a class of
nonlinear elliptic operators. Advances in Calculus of Variations, Vol 12 Issue 4 (Oct
2019) pages 393-422. Appeared online, Nov 14, 2017. 30 pages. DOI: https://doi.org/10.1515/acv-2016-0007.

**Bhattacharya, T.** and Marazzi, L. On the viscosity solutions to a class of nonlinear degenerate parabolic
equations. Revista Matematica Complutense 30(3), 621-656. Appeared Online (April 1,
2017) DOI:10.1007/s13163-017-0229-2. 36 pages.

**Clark, D. L.** (2017). The crossroads of stakeholders’ views of CCSSM implementation. In E. Galindo
& J. Newton, (Eds.), *Proceedings of the 39 ^{th} annual meeting of the North American Chapter of the International Group for the Psychology
of Mathematics Education* (p. 546). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.

Diao, Y., **Ernst, C. D.**, Rawdon, E., Ziegler, U. (2017). Relative Frequencies of Alternating and Nonalternating
Prime Knots and Composite Knots in Random Knot Spaces. Experimental Mathematics,
1- 18, DOI: 10.1080/10586458.2017.1320239.

**Dunkum, M.** and Knowles, T. “Embracing LEAP in Kentucky,” with T. Knowles, Peer Review 19 (3)
Summer 2017.

Iraniparast, N., **Nguyen, L.**, and **Khenner, M.**, “Asymptotic behavior of waves in a nonuniform media”, *Applications and Applied Mathematics ***12(1)**, 217 – 229 (2017).

**Khenner, M.** “Height transitions, shape evolution, and coarsening of equilibrating quantum nanoislands”,
*Modelling and Simulation in Materials Science and Engineering***25, **085003 (2017).

**Khenner, M.** “Interplay of quantum size effect, anisotropy and surface stress shapes the instability
of thin metal films”, *Journal of Engineering Mathematics***104**, 77-92 (2017).

Lazaar, S., **Richmond, T.**, and Turki, T. Maps Generating the Same Primal Space, *Quaestiones Mathematicae* 40(1) (2017) 17-28. doi 10.2989/16073606.2016.1260067.

Mhemdi, A. and **Richmond, T.** Complements of Convex Topologies on Products of Finite Totally Ordered Spaces, *Positivity*, 21(4) (2017) 1369-1382. doi:10.1007/s11117-017-0472-2.

Molchanov, S., Zhang, Z. and **Zheng, L.** (2017). Central limit theorem of Turing's formula. ACMPT-2017 proceedings , UDC 519.214.

Molchanov, S. and **Zheng, L.** (2017). Cluster expansion of the resolvent for the Schrödinger operator on non-percolating
graphs with applications to Simon-Spencer type theorems and localization. Journal
of Spectral Theory , 7 (3): 733-770.

**Özer, A. Ö.** Modeling and Control results for an active constrained layered (ACL) beam actuated
by two voltage sources with/without magnetic effects, IEEE Transactions on Automatic
Control, (62-12) (2017), pp. 6445-6450.

**Spraker, J.** “Solutions for a Second-Order Delay Differential Inclusion on the Half-Line with
Boundary Values”, Differential Equations and Applications,Vol. 9, No.4, pp 543-552
(2017).

Strayer, J. F., Barlow. A. T., Lischka, A. E., **Gerstenschlager, N. E.**, Stephens, D. C., Willingham, J. C., & Hartland, K. S. (2017). Meeting the needs
expressed by teachers: Adaptations of the traditional model for demonstration lessons.
National Council of Supervisors of Mathematics Journal of Mathematics Education Leadership,
18(1), 18-26.

**Zheng, L.** and Jiang, J. (2017). A new diversity estimator. The Journal of Statistical Distributions
and Applications, 4 (1): 1-13.

Some of the links on this page may require additional software to view.