

June 29, 2023 Nancy Rausch Director, Research and Development, SAS Institute

About me...

- I am a Director of Research and Development and a Data Scientist at SAS Institute in Cary, North Carolina.
- I am the Chairperson of the Linux Foundation AI & Data Technology Advisory Council.
- Industry Advisor to the NSF LASER Institute for Learning Analytics
- BS in Electrical Engineering, MS in Computer Engineering & Statistics, MS in Data Analytics
- Areas of Specialization: Data Management, Data Governance, Data Quality, AI for Data Management, Renewable Energy Forecasting, Health Care analytics, Social Science Analytics

•••••

About SAS Institute

- Statistical software company
 - ~\$4B in revenue
 - Worldwide sales
 - Employs about 10,000 people world-wide
 - Engineers, Data Scientists, Machine Learning Developers, Statisticians, Business Analysts, Sales, Marketing, many other roles
- We develop applications, solutions and a statistical language, also called *SAS*, to perform analytics
- We use statistics and business analytics to extract knowledge from data

Get free access to powerful SAS software for statistical analysis, data mining and forecasting. Point-and-click functionality means there's no need to program. Like to program? You can do that, too.

For Educators	
For Students	•
For Independent Learners	0

Students and Educators have free access to **SAS** Learning **Edition**

0 0 0 5 0

Free online courses in statistics and analytics

Data Cleaning for Data

Poll: In a modeling or reporting project, about how much time do people spend cleaning and preparing the data?

1. 20% 50%) 80%

Answer: In a modeling or reporting project, about how much time do people spend cleaning and preparing the data? 80%

20% 50% 80%

• • • • • • • • • •

Preparing data is hard!

Copyright © SAS Institute Inc. All rights reserved.

nsas

Agenda

- 1. Why data quality?
- 2. Data cleaning techniques: Dimensions of data quality
- 3. Design considerations for analytical and reporting use cases
- 4. Advanced topics
- 5. Wrap up and summary

Why Data Quality?

Common causes of poor Data Quality

- Human error
- Algorithmic error
- Misinterpretation error

• • • • • • • • • •

Simpson's Paradox UC Berkeley gender bias study: Is this bias?

		AI	I	Ме	n	Women		
		Applicants	Admitted	Applicants	Admitted	Applicants	Admitted	
То	tal	12,763	41%	8,442	44%	4,321	35%	

Simpson's Paradox Not if you look closer....

Department	All		Men		Women			
Department	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted		
Α	933	64%	825	62%	108	82%		
В	585	63%	560	63%	25	68%		
С	918	35%	325	37%	593	34%		
D	792	34%	417	33%	375	35%		
E	584	25%	191	28%	393	24%		
F	714	6%	373	6%	341	7%		
Total	4526	39%	2691	45%	1835	30%		

Legend:

greater percentage of successful applicants than the other gender

greater number of applicants than the other gender

NC County Population Info by Nancy Rausch

More examples of common data quality issues..

- Missing a time period in a timeseries dataset
- Missing data in a row, data misplaced into some other cell in a row
- Invalid values
- Highly correlated variables
- Mismatched ratio of features to rows
- Difference in scale
- Using scale to represent nominal variables
- Unary or Binary variables will low information value
- Incompatible distributions or violation of assumptions for the model being used

Data cleaning techniques: Dimensions of data quality

Dimensions

6 characteristics of clean data

- 1. Completeness
- 2. Uniqueness
- 3. Accuracy
- 4. Validity
- 5. Consistency
- 6. Timeliness

1. Completeness

1. Completeness

Definition:

• The degree to which all required data is known.

Quality issues in this dimension:Missing or truncated data

Example

	А	В	С	D	E	F	G	Н	1	J	K
1	Date	Overall AQI Value	Main Pollutant	Site Name (of Overall AQI)	Site ID (of Overall AQI)	Source (of Overall AQI)	CO	Ozone	SO2	PM10	PM25
2	1/1/2008	38	PM2.5	Millbrook School	37-183-0014	AQS	17	36	6	9	38
3	1/2/2008	28	Ozone	Millbrook School	37-183-0014	AQS	8	28	9	<	
4	1/3/2008	\smile	PM2.5	\bigcirc	37-183-0014	AQS	15	23	23		42
5	1/4/2008	75	PM2.5	Millbrook School	37-183-0014	AQS	22	20	10		75
6	1/5/2008	70	PM2.5	Millbrook School	37-183-0014	AQS	23	24	21	19	70
7	1/6/2008	51	PM2.5	Millbrook School		AQS	20		.)	14	51
8	1/7/2008		PM2.5	Millbrook School	37-183-0014	AQS	25	20		15	58
9	1/8/2008	43	PM2.5	Millbrook School	37-183-0014	AQS	25	22	1	11	43
10	1/9/2008	34	PM2.5	Millbrook School	37-183-0014	AQS	18	25	4	10	34
11	1/10/2008	/10	DN/2 5	Finley Farm	37-183-0020	405	12	22	Λ	11	40

- - $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Impact

§ sas

Check the variables importance

- Are there other variables that have similar information value and are better quality?
- Is the variable highly correlated to some other variable?

Remove variables that have lower information value, choose those that are less complete first

SAS Data Mining makes this easy: SAS provides packaged solutions to identify and automatically remove poor quality or redundant variables

SAS/STAT User's Guide

The MI Procedure

1. Impute a new value

- SAS offers many methods for imputing values; can be calculated, adjusted to the mean, regression analysis predicted, generative data
- Tip: check the distribution and performance of the data after imputation

2. Calculate missing value from other values

- Examples:
 - For date-of-birth is provided, calculate age
 - Use data quality standardization techniques to impute the value

SAS/STAT User's Guide

The MI Procedure

1. Impute a new value

- SAS offers many methods for imputing values; can be calculated, adjusted to the mean, regression analysis predicted, generative data
- Tip: check the distribution and performance of the data after imputation

2. Calculate missing value from other values

- Examples:
 - For date-of-birth is provided, calculate age
 - Use data quality standardization techniques to impute the value

StandardizedAddress ADDRESS 444 4861 ROSALIA DRIVE 4861 Bosalia Dr 445 2001 CONSTANCE STREET 2001 Constance St 446 300 COLONIAL CLUB DRIVE 300 Colonial Club Dr 447 2323 S. GALVEZ ST 2323 S Galvez St 1020 N PRIEUR STREET 1020 N Prieur St 448 449 2035 TOLEDANO STREET 2035 Toledano St 450 2437 JENA STREET 2437 Jena St 451 1415 TECHE STREET 1415 Teche St 452 315 CIVIC DRIVE 315 Civic Dr 453 215 BETZ PLACE 215 Betz PI 75 E CHALMETTE CIRCLE 454 75 E Chalmette Cir 455 5701 VETERAN'S MEMORIAL BLVD. 5701 Veteran'S Memorial Blvd 456 726 JOHN HILL TAYLOR DR 726 John HI Taylor Dr 457 1207 EAST BROADWAY 1207 E Broadway 458 170 E GAP HILL RD 170 E Gap HI Rd 200 ENTERPRISE DRIVE 459 200 Enterprise Dr 460 RT 4 B0X 90 RR 4 PO Box 90 461 170 W A JENKINS ROAD 170 W A Jenkins Rd 462 357 WEST ARCH ST 357 W Arch St 463 10362 ST RTE 138 10362 St RR 138 464 MAIN CROSS ST BOX 69 Main Cross St PD Box 69

• • • • • •

Ssas

- Incomplete data is not necessarily missing data!
 - A valid value may not exist
 - Missing data may be useful: Example: *Does not apply* or *Unchecked*
 - Replacing with 0 is a good indicator for these situations
- Always remember to check correlation between variables and variable importance after adjustment
 - It can save you a lot of time if two variables are highly correlated. You don't need to correct data quality problems for every variable!
- Consider multiple imputation; produces less biased estimates

SAS/STAT User's Guide

2. Uniqueness

2. Uniqueness

Definition:

- Data is unique, with only one instance of data values in the expected records.
- High uniqueness is a good indicator that you can trust the data.

Quality issues in this dimension:

Duplicate values in expected records

Example

Simple use case

	A B		С	D
1	Date	Overall AQI Value	Main Pollutant	Site Name (of Overall AQI)
2	1/1/2008	38	PM2.5	Millbrook School
3	1/2/2008	28	Ozone	Millbrook School
4	1/3/2008	42	PM2.5	Millbrook School
5	1/3/2008	42	PM2.5	Millbrook School
6	1/4/2008	75	PM2.5	Millbrook School
7	1/5/2008	70	PM2.5	Millbrook School
8	1/6/2008	51	PM2.5	Millbrook School
0	1/7/2000	ГО		Millbrook Sebool

.

Example

Duplicate values across multiple variables

name	address
Kathy Woods	789 Belle Ln
Susan Woodward	152 Blackberry Ln
Sue Woodward	152 Blackberry Lane
Susan Woodward	152 Blackberry Ln
Donny Williams	1034 Skyview Rd
Donald Williams	1034 Skyview Rd
Don Williams	1034 Skyview Road
Colin Ware	1324 S Buchanan St
James Brigs	1507 Bear Springs Rd
Jim Briggs	1507 Bear Springs Rd
James Briggs	1507 Bear Springs Road
James Briggs	1507 Bear Springs Rd
April Lasser	5367 Rustic Elk Limits
April Lasser	5367 Rustic Elk Limits
David Lester	2910 Weisman Rd

Single record duplicates

Detect and remove the duplicate records

Impact

Multiple record duplicates

Data combined from different silos can cause the same analysis subjects to occur more than once in the database.

Integrating these records can be challenging; different databases may not have the same identifier for the records.

Standardization and records matching on significant, distinguishing attributes of the data such as names, phone numbers, or bank account numbers are helpful.

Figure 3. Join, standardize and remove duplicates from your data with the powerful and intuitive SAS Data Quality user interface.

Correction Techniques

Use clustering techniques – SAS Example

_					
#	💧 ID	A COMPANY	A CONTACT	😥 CLUSTER 🛆	A MATCH_CODE
3025	215	Allied Signal Inc.	Rich Temple	10	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$!&W~4HPW\$\$\$\$\$
3026	219	Allied Signal Inc.	Todd Kotte	10	\$\$\$\$\$\$\$\$\$\$\$\$\$!&W~4FPW\$\$\$\$\$
3027	483	Salt River Project	Susan Bradshaw	11	ZK00LYP\$\$\$\$\$\$!4W~YVYNYC\$\$\$
3028	486	Salt River Project	John Reiss	11	ZKOOLYP\$\$\$\$\$\$!4W~YVYNYC\$\$\$
3029	490	San Diego County	Curt Delarosa	12	\$\$\$\$\$\$5HZ\$\$\$\$!4P8F3P~\$\$\$\$\$
3030	488	San Diego County	Benjamin Mccorkle	12	\$\$\$\$\$\$5HZ\$\$\$\$!4P8F3P~\$\$\$\$\$
3031	03	Jaxson Data Corporation	DONALD WILLIAMS	13	H56I2CL\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$
3032	04	The Jackson Data Corp.	DONALD F. WILLIAMS	13	H56I2CL\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$
3033	02	Jackson Data Co.	DON WILLIAMS	13	H56I2CL\$\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$\$
3034	06	Jackson Data Inc.	DONNY WILLIAMS	13	H56I2CL\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$
3035	07	The Jacksen Data Co	DON WILIAMS	13	H56I2CL\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$
3036	05	Jackson Data	MR DON F WILLIAMS	13	H56I2CL\$\$\$\$\$\$!CXP8~\$\$\$\$\$\$
3037	735	Northrop Corporation	Anthony Lutzker	14	D0Z\$CGY\$\$\$\$\$\$!PY~2YN\$\$\$\$\$\$
3038	737	Northrop Corporation	W. Binns	14	D0Z\$CGY\$\$\$\$\$\$!PY~2YN\$\$\$\$\$\$
3039	495	Glendale Advenist Me	Elijah Mellor	15	ZKOOLYP\$\$\$\$\$\$!FWP8W8VP4\$\$\$ 🔤
3040	496	Glendale Advenist Me	Debbie Cochrane	15	ZKOOLYP\$\$\$\$\$\$!FWP8W8VP4\$\$\$
3041	977	Kings County	Bev Johanson	16	\$\$\$\$\$\$\$\$\$\$\$\$\$\$!3PF3P~\$\$\$\$\$\$\$ 🚬

FINAL_MATCHES .

🚯 | 🐺 Filter and Sort 🍓 Query Builder | Data • Describe • Graph • Analyze • | Export • Send To • | 📑

	A NAME	ADDRESS	CITY	💩 STATE	🍐 ZIP	A PHONE	🗊 DOB 💩 G	ender 🍐 Education	Income_Level	A Household	A CAR_MAK	AR_MODEL	CAR_YEAR
1	Abigail Sargent	4211 S Rushford St	Palo Alto	CA	94303	860-952-3496	16APR1965 F	High School gradu	Less than \$25,000	Single, never marr			
2	Andre Hulbert	5024 Fairbanks W.	Sunnyvale	CA	94089	618-121-6649	30SEP1971 M	Bachelor's degree	\$100,000 to \$149,	Separated			
3	Ashley Bey	P.O. Box 6239	N. Ridgeville	OH	44039	271-475-5054	14MAR1972 F	Bachelor's degree	\$100.000 to \$149	Single, never marr_	BMW	M2	2014
4	Cathy Lapp	4400 NC Highway	ST. LOUIS	MO	63134	718-922-0353	28JAN1982 F	Doctorate degree	\$75,000 to \$99,999	Widowed	Acura	RDX.	2009
5	Cindy Prentiss	515 E. Broad St.,	St Louis	MO	63146	949-161-1908	26JUN1974 F	Doctorate degree	\$50,000 to \$74,999	Divorced	Mercedes-Benz	C300	2007
6	David Grassi	824 Valerie Dr Uni.	Pomone	CA	91768	806-295-2544	200CT1985 M	Bachelor's degree	Less than \$25,000	Single, never marr.	Toyota	Camry	2012
7	Denise Nath	1215 N Caldwell St	New Haven	CT	06516	660-469-0704	12NOV1977 F	Some high school,	Less than \$25,000	Separated	S. Carrows		
8	Douglas Doty	406 Mcclure Cir	Minneepolis	MN	65431	860-323-7265	14FEB1970 M	Doctorate degree	\$75,000 to \$99,999	Divorced	Mercedes-Benz	E350	2014
9	E Fusco	2617 Ramsey Rd.	Hemdon	VA	22070	500-881-3331	08JUN1983 M	Bachelor's degree	\$75,000 to \$99,999	Single, never marr.	Toyota	Tundra	2013
10	Eric Einhorn	23 S Saunders Rd	Hutchins	KS	67504-5282	530-406-2382	12FEB1973 M	Bachelor's degree	\$75,000 to \$99,999	Single, never marr	Hyundai	Tuscon	2008
11	Gary Stratman	5153 Camino Ruiz	Sunnyvale	CA	94086	350-964-1700	12FEB1974 M	Bachelor's degree	\$100.000 to \$149	Married or domest.			
12	Gwen Story	2120 Raven Glass.	PHLADELPHA	PA	19178-4955	284-565-7463	170CT1976 F	Some high school	\$25,000 to \$34,999	Married or domest.			
13	Jessica Macias	5230 Walnut Grov.	Sherman	TX	75090-4440	738-818-2196	20JUN1977 F	Bachelor's degree	\$100,000 to \$149,	Widowed	Acura	MDX.	2010
14	Johnathon Soon	239 N Edgeworth_	St Louis	MO	63104	615-005-6993	17JUN1976 F	Master's degree	\$100.000 to \$149	Married or domest.	Hyundai	Santa Fe	2013
15	Jonathan Mc Gee	4900 Rivergrade_	Bannockburn	IL.	60015	843-042-5960	190CT1974 F	Bachelor's degree	\$150,000 to \$199,	Married or domest.	Honda	Accord	2015
16	Jose Rochford	2800 Woodlawn D.	Ballwin	MO	63011	721-144-7436	28OCT1970 M	High School gradu.	\$150,000 to \$199,	Divorced		Sec	· · · · · ·
17	K Sekeres	5541 Central Ave	Marlow	NH	03456	991-312-5527	06AUG1971 F	Master's degree	\$50.000 to \$74.999	Widowed	Acura	RDX	2009
18	Kristina Radley	4430 E Greensbor.	Kansas City	MO	64141 6267	979-842-2568	18NOV1979 F	Doctorate degree	\$200,000 or more	Married or domest.	Acura	TLX	2015
19	Lou Voss	777 S. Harbor Blvd.	Bellevue	WA	98006-1800	357-989-4735	02FEB1967 M	Some high school	\$75,000 to \$99,999	Widowed	Hyundai	Elantra	2010
20	Margaret Muench	3001 W Mission R.	Dellas	TX	75247	883-271-9095	15AUG1969 F	Doctorate degree	\$75.000 to \$99.999	Separated		1	
21	Michelle Wan	4000 East Sky Ha.	Chesterfield	MO	63005	426-758-4180	06MAR1974 F	Some high school,	\$75,000 to \$99,999	Single, never marr.			
22	Miranda Andre	510 LightHouse A.	Cupertino	CA	95014	620-959-5034	13JAN1976 F	Doctorate degree	\$200.000 or more	Divorced	2402011	1	
23	Ms. Shannon Mazo	1515 Lord Ashley_	St. Louis	MO	63128	956-586-4147	04SEP1981 F	Bachelor's degree	Less than \$25,000	Single, never marr.	BMM	VE	2006
24	Pat Pietron	4305 Central Ave.	Orem	UT	84058	455-854-5248	10JUL1977 M	Some high school,	\$75,000 to \$99,999	Divorced	7		2012
25	Phillip Gerstle	PO Box 13607	Skokie	L	60076-2999	360-681-2934	09JUL1967 M	Master's degree	\$150.000 to \$199	Divorced			2011
26	Rob Rubenstein	3939 Ruffin Rd	StLouis	MO	63021	297-073-4204	140CT1968 M	Some high school	\$35,000 to \$49,999	Divorced			2013
27	Samuel Harleen	102 Echo Glen Dr	St. Charles	MO	63301	731-887-4557	29JUL1992 M	Master's degree	\$200,000 or more	Married or domest		lunique	2011
28	Sean Nugent	1993 Emsford Dr	St. Louis	MO	63114	495-764-8564	09NOV1982 M	High School aredu	\$25,000 to \$34,999	Divorced	, U	angae	2011
29	Sharon Mandelba	3540 Wilshire Blvd	Redwood Shores	CA	94065	902-861-5137	28SEP1960 F	Bachelor's degree	\$200,000 or more	Married or domest			2005
30	Sidney Tretter	161 Northfork Rd	Lima	OH	45801	419-566-4321	15NOV1972 F	Mester's degree	\$50,000 to \$74,999	Widowed			2009

Figure 12. Final Scoring Results

Correction Techniques

Record Linkage in Python

3. Accuracy & 4. Validity

3. Accuracy & 4. Validity

Definition:

• How well the data *verifiably* represents the real-world scenario.

Quality issues in this dimension: • Inaccurate or invalid data

Very important in some domains, such as health care or finance.

Examples

- Inaccurate or invalid phone numbers:
 - XX-335-32 vs. XXX-335-3232 (too short!)
 - XXX-3<mark>8</mark>5-3232
- Invalid birth details
- Invalid credit card charges

- Tip: Data in this dimension frequently requires verification using domain expertise.
 - Examples:
 - a certificate from a bank
- a medical coding expert

• • •

Handling Techniques – Apply Business Rules

Business Rules are frequently used to determine Validity and Accuracy, when data requires domain expertise to detect and correct

SAS[®] Business Rules Manager

Automate and improve decisions across the enterprise

Handling techniques – Use known data (lookup tables)

SAS Business Rules Manager

🔒 Business Rules - Monitor	Repository ×				
File Edit View Tools Window	w Help 🔣 🔆 New 🕶 🖺 🔀 💠 🗇	?			⊿
	Name	Туре	Fields Used	Used In Tasks	
🗄 🕀 💼 Rules	DF_Account - Format (Historical) - Set C	Set	ACCOUNT_NUMBER	DF_Validity_Account_Account Number	
庄 💼 Rule Sets					
🕂 📺 💼 Fields	DF_Account - Format - Row	Row	ACCOUNT_NUMBER	DF_Validity_Account_Account Number	
🕂 🕀 💼 Field Sets			SRC_SYS_ID		
E Custom Metrics			SRC_SYS_REC_ID		
I					
I III → Dashboards	DF_Account - Format - Set C	Set	ACCOUNT_NUMBER	DF_Validity_Account_Account Number	
Dimensions					
	DF_Account - Format Pct (Historical) - Set C	Set	ACCOUNT_NUMBER	DF_Validity_Account_Account Number	
	•				

Python – Great Expectations

expect_batch_row_count_to_match_prophet_date_mo del (Contrib BatchExpectation)

expect_column_average_lat_lon_pairwise_distance_to_ be_less_than (Contrib ColumnAggregateExpectation)

expect_column_average_to_be_within_range_of_given_
point (Contrib ColumnAggregateExpectation)

Contrib ColumnAggregateExpectation)

expect_column_distinct_values_to_be_continuous (Contrib ColumnAggregateExpectation)

5. Consistency

5. Consistency

Definition:

 Data is stored in a similar way across dimensions and records.

Quality issues in this dimension:

- formatting problems
- data stored at different levels of summarization
- data mismatch

Examples

Inconsistent calculationsMonthly revenue: \$70Monthly cost: \$10

– Monthly profit: <u>\$567</u> -

??

Handling Techniques

- Use database constraints:
 - Example: If I have a PERSON I must also have an ADDRESS
- Use calculated columns
 - Example: Calculate AGE instead given a birth date
- Create Business Rules
 - Example: If VALUE > 500 then RAISE ERROR
- Use Anomaly detection
 - SAS supports multiple techniques
 - Regression analysis

SAS Anomaly Detection

	Amount Paid	Product Name	Product SKU	Price	Product Category	Purchases Amount	
	\$1,887.31	puffer jacket	49164579	\$1,887.31	Men Leisure	\$11,363	
•	\$1,838.80	puffer jacket	49164579	\$1,887.31	Men Leisure	\$9,290	
	\$1,736.33	puffer jacket	49164579	\$1,736.33	Men Leisure	\$8,798	
	\$1,736.33	puffer vest	3941183	\$1,736.33	Men Leisure	-	
	\$1,691.70	puffer jacket	49164579	\$1,736.33	Men Leisure	\$9,258	
	\$1,690.48	puffer vest	3941183	\$1,736.33	Men Leisure	\$9,258	

What Is the Effect of Outliers on Amount Paid?

Including Outliers	Excluding Outliers	Outlier Impact	Difference
\$855,494.20	\$722,440.06	15.55%	133054.1332
\$719.51	\$642.17	10.75% ====	77.338368903
\$581.95	\$572.87	1.56% #	9.08265
	Including Outliers \$855,494.20 \$719.51 \$581.95	Including Outliers Excluding Outliers \$855,494.20 \$722,440.06 \$719,51 \$642.17 \$581.95 \$572.87	Including Outliers Excluding Outliers Outlier Impact \$855,494.20 \$722,440.06 15.55% \$719,51 \$642.17 10.75% \$581,95 \$572.87 1.56%

Python using PyOD

Reference	Name	
		ID
pyod.models.abod.ABOD	Angle-base Outlier Detection	abod
pyod.models.cblof.CBLOF	Clustering-Based Local Outlier	cluster
pyod.models.cof.COF	Connectivity-Based Local Outlier	cof
pyod.models.iforest.IForest	Isolation Forest	iforest
pyod.models.hbos.HBOS	Histogram-based Outlier Detection	histogram
pyod.models.knn.KNN	K-Nearest Neighbors Detector	knn
pyod.models.lof.LOF	Local Outlier Factor	lof
pyod.models.ocsvm.OCSVM	One-class SVM detector	svm
pyod.models.pca.PCA	Principal Component Analysis	pca
pyod.models.mcd.MCD	Minimum Covariance Determinant	mcd
pyod.models.sod.SOD	Subspace Outlier Detection	sod
pyod.models.sos.SOS	Stochastic Outlier Selection	SOS

Image by Author

6. Timeliness

6. Timeliness

Definition:

• The data is available with the expected timeframe.

Quality errors in this dimension:

- Stale or old data
- Data is not received at the expected pace
- Missing time periods

Examples

- Data is expected quarterly, but it is collected yearly
 - Systems produce data at different times, and they need to be consolidated
- Data is collected at different or fluctuating intervals

	al-uata-conection		
DATA POINT	MACHINE A	MACHINE B	STANDARDIZED DATA
Date	December 27, 2015	12/27/2015	12/27/15
Part Count	part_ct	Part:Count	PartCount
Machine Alarm	estop	Alarm:EStop	EmergencyStop

Impact

consolidate the data across different systems Impossible to impute missing time periods for values

Handling Techniques

- Clean out old/stale data
- Use date/timestamps in your data
- Standardize on data/time collection periods and apply those across systems
- Use business rules to watch for errors
- Use SAS procedures to detect and correct timeseries errors

Question:

Why has Roman concrete survived the centuries?

1. Special ingredients only found in Rome

2. Tiny impurities in the concrete

3. Aliens helped

Question:

Why has Roman concrete survived the centuries?

1. Special ingredients only found in Rome

2. Tiny impurities in the concrete

3. Aliens helped

Tiny impurities in Roman concrete make it self-healing

A large-area elemental map (Calcium: red, Silicon: blue, Aluminum: green) of a 2 cm fragment of ancient Roman concrete (right) collected from the archaeological site of Privernum, Italy (left). A calcium-rich lime clast (in red), which is responsible for the unique self-healing properties in this ancient material, is clearly visible in the lower region of the image.

Courtesy of the researchers

Part 2: Good data quality starts with good design

Tips For Tidy Data Part 1

- Column headers are variable names, not values
 - Every column is a variable
 - Make variable names easy to understand
- Don't store variables in one column unless you need the data that way – Ex: Smith, Peter

Every row should be an observation

relig_income				
#> # A tibble: 18 ×	11			
<pre>#> religion</pre>	`<\$10k`	\$10-21	\$20-3²	\$30-4
#> <chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
<pre>#> 1 Agnostic</pre>	27	34	60	
#> 2 Atheist	12	27	37	
<pre>#> 3 Buddhist</pre>	27	21	30	
<pre>#> 4 Catholic</pre>	418	617	732	6
<pre>#> 5 Don't know/re</pre>	15	14	15	

Tips For Tidy Data Part 2

- Use database constraints to ensure data integrity
 - Ex: If you add a NAME, then must have ZIPCODE
- Use a single date column that represents the record date
 - 5 date columns make it difficult to understand which date actually represents the record
- Don't use data 'as-is'. Use processes to help prepare it, preferably repeatable
 - Examples: Rescale and Center Numeric values before using them in models
 - 827433.33 vs. 0.8274333 have very different information value!
 - Center around a 0 or a 1 mean

Tips for Tidy Data Part 3

- Have or generate a primary key for each record
 - Don't rely on row order, because databases may mix them up
 - Sequential values do not work in parallel systems
 - A UUID is better in these cases (for big data)

• Add descriptive information to the Dataset itself. Use labels, descriptions, and other good information. We all forget!

Recoding variables

La	abel Encoding	
Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Recode variables where the numeric value has no relevance to the data

Examples to watch out for:

- Increasing dates
- Categories coded as numbers

- Gender

- Demographic variables

– Race

Use Surviving Records

Deduplication by selecting the best record

GroupID	_Frequency_	_Position_	id	name	address	updatedate
23	2	2	105345	Kathy Woods	789 Belle Ln	08JAN2018
24	3	1	11004	Susan Woodward	152 Blackberry Ln	01JAN2018
24	3	2	58786	Sue Woodward	152 Blackberry Lane	13JAN2018
24	3	3	12004	Susan Woodward	152 Blackberry Ln	02JAN2018
25	3	1	66252	Donny Williams	1034 Skyview Rd	16JAN2018
25	3	2	99307	Donald Williams	1034 Skyview Rd	23JAN2018
25	3	3	36247	Don Williams	1034 Skyview Road	09JAN2018
26	1	1	92333	Colin Ware	1324 S Buchanan St	27JAN2018
27	4	1	79521	James Brigs	1507 Bear Springs Rd	02JAN2018
27	4	2	88367	Jim Briggs	1507 Bear Springs Rd	25JAN2018
27	4	3	11345	James Briggs	1507 Bear Springs Road	01JAN2018
27	4	4	16206	James Briggs	1507 Bear Springs Rd	05JAN2018
28	2	1	95948	April Lasser	5367 Rustic Elk Limits	19JAN2018
28	2	2	85948	April Lasser	5367 Rustic Elk Limits	05JAN2018
29	1	1	30245	David Lester	2910 Weisman Rd	02JAN2018

• • •

Dataset design Principals

Table 7.2: Content of CUSTOMER table

CustID	Birthdate	Gender
1	16.05.1970	Male
2	19.04.1964	Female

Table 7.3: Content of ACCOUNT table

AccountID	CustID	Туре	OpenDate	
1	1	Checking	05.12.1999	
2	1	Savings	12.02.2001	
3	2	Savings	01.01.2002	
4	2	Checking	20.10.2003	
5	2	Savings	30.00 2004	

One row-per-subject: Transpose is your friend!

and the per bableet data mart for manple observations

CustID	Birthdate	Gender	Number of Accounts	Proportion of Checking Accounts	Opendate of oldest account
1	16.05.1970	Male	2	50 %	05.12.1999
2	19.04.1964	Female	3	33 %	01.01.2002

One row-per-subject designs

When to use

- Prediction of events like a Campaign
- Time series models for Prediction for single dimensions
- Cluster segmentation: patients, customers, text documents
- Reporting where you want to provide detail and summary report views into the data (just easier this way!)

Aggregation may be

required

One row-per-subject designs

Analytical models that do well with this design

- Regression models
- Time series forecasting
- ANOVA
- Survival analysis
- PCA
Dataset design

Multiple rows-per-subject

CustID	Birthdate	Gender	AccountID	Туре	OpenDate
1	16.05.1970	Male	1	Checking	05.12.1999
1	16.05.1970	Male	2	Savings	12.02.2001
2	19.04.1964	Female	3	Savings	01.01.2002
2	19.04.1964	Female	4	Checking	20.10.2003
2	19.04.1964	Female	5	Savings	30.09.2004

Examples

Table 9.2: Market basket data for two customers with additional data on CUSTOMER level

	CUSTOMER	PRODUCT	Segment
N	213	baguette	SILVER
20	213	hering	SILVER
3	213	avocado	SILVER
4	213	artichok	SILVER
5	213	heineken	SILVER
6	213	chicken	SILVER
7	213	coke	SILVER
8	217	baguette	GOLD
9	217	hering	GOLD
10	217	avocado	GOLD
11	217	artichok	GOLD
12	217	heineken	GOLD
13	217	apples	GOLD
14	217	peppers	GOLD
15	221	soda	SILVER
16	221	olives	SILVER
17	221	bourbon	SILVER
18	221	cracker	SILVER
19	221	heineken	SILVER
20	221	turkey	SILVER
21	221	steak	SILVER

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

•

Table 9.5: Web log data with a session sequence variable

	Session Identifier	requested_file	session_sequence
1	43d0a4da826149b5 2002-02-17 08:38:12	/Home.jsp	1
2	43d0a4da826149b5 2002-02-17 08:38:12	/Cookie_Check.jsp	2
3	43d0a4da826149b5 2002-02-17 08:38:12	/Home.jsp	3
4	43d0a4da826149b5 2002-02-17 08:38:12	/Corporate_Relations.jsp	4
5	43d0a4da826149b5 2002-02-17 08:38:12	/Retail_Store.jsp	5
6	43d0a4da826149b5 2002-02-17 08:38:12	/Store/Store_Locations.jsp	6
7	43d639ebce6c73d8 2002-02-17 23:43:16	/Home.jsp	1
8	43d639ebce6c73d8 2002-02-17 23:43:16	/Cookie_Check.jsp	2
9	43d639ebce6c73d8 2002-02-17 23:43:16	/Home.jsp	3
10	43d639ebce6c73d8 2002-02-17 23:43:16	/Department.jsp	4

§sas

Э

Multiple row-per-subject designs

When to use

- Products frequently bought together (aka Market Basket Analysis)
- Association analysis
- Time series analysis with different analysis subjects
- Longitudinal analysis
- Sequence analysis

Summary: Good design saves time

§sas

Advanced topics

Catalogs, Lineage, Maintenance, data drift, curation, bias

Who will you call when you need some new data?

- Does this data exist?
- Where is it?
- What is the source of truth of that data?
- Do I have access to it?
- Who is the owner?
- Who are the common users?
- Is there existing work I can re-use?
- Can I trust this data?

Business Challenges

Cope with the digital transformation disruption

Complex Ecosystems

ŶŢŶ

Privacy & Ethics

"The two biggest challenges in data management are centered around data catalogs—finding and identifying data that delivers value, and supporting data governance, data privacy and data security." (Gartner)

Data Catalogs capture Data about Data, aka Metadata The ABC's of metadata

- <u>Application Context</u> information needed to understand the data, its context, description, semantics
- <u>B</u>ehavior information about how the data was created, how it is maintained, who owns it, how is it provisioned?
- <u>C</u>hange how the data changes over time, and the processes that
 manage it

畍

∠ි

SAS® Information Catalog - Discover Information Assets

Discover Information Assets Import data Ignite your analytics journey What assets are you looking for? ρ WELCOME CATALOG AT A GLANCE Take a tour or visit our SAS Information Catalog User's Guide. Total assets Data sets Files Data plans 1.8 K ■ 1.2 K ■ 316 ■ 246 Studio flows ∽⊡ () Also check out our latest updates to SAS Information Catalog 69 and see what's new! COLLECTIONS Search indexes: (no filter) (Ĵ Recent Actions * Favorites Name × Status 0 Asset Type Date Analyzed Date Modified File Jun 27, 2023 12:09 PM SAS ProgramTSFiltersData 숩 \square -----QueryTSFilters File Jun 27, 2023 12:09 PM 쇼 -----SAS ProgramTSDate 슙 File Jun 27, 2023 11:31 AM ----I-41 ∆M Data nlan 💷 Plan 1 \Leftrightarrow ---

	SAS® Information Catalog - Discover Information Assets							21 ?	
Catalog Home > Search Results	> CARS_ZH								₽ New search
F CARS_ZH 中文I18N_CAS连接		Completeness:	99%	^{Columns}	Rows	size 234.1 KB	Status @ <u>None</u>	<i>ب</i>	☆ Actions
III Overview III Column A	Analysis 🖷 Sample	e Data						Date analyze	ed: Jun 26, 2023 10:38
Descriptive View > Column Gr	raphs								Ū
Ø Filter ±∓ :	& 类型Type Label: 类型					Semantic Type	Information Privacy	Primary Key (No	Candidate ⑦
▲ 制造商Make ✓	Data Quality				M	lismatched			0
	Distinct Values	100%	1%		Ad	tual Type Number of Miss tring 0	matched Percent	Matching	100%
▲ 原产Origin		Completeness	Uniqueness						
▲ 传动系Dri ✓	Frequency Distr	ibution	То	p Bottom	Pat	ttern Frequency			0
⊕ 建议零 🎜	轿车 -	26	2						
⊕ 发票Inv ¥	越野车 - 60 体育 - 49					AA -	368		
⊕ 发动机 ⊷	车皮 - 30				Δ	44 - 40		\mathbf{O}	
) 气缸Cyli*	混合 -	50 100	150 200	250					15
∰ 马力Hor8 🖌	-					- 100			

≌ ഹු

0

Amundsen

🕟 Stars 👍 license Apache 2 PRs welcome commit activity 0/week contributors 209 🎔 Follow 🏘 Slack 🤅 join chat

Amundsen is a *data discovery and metadata engine* for improving the productivity of data analysts, data scientists and engineers when interacting with data. It does that today by indexing data resources (tables, dashboards, streams, etc.) and powering a page-rank style search based on usage patterns (e.g. highly queried tables show up earlier than less queried tables). Think of it as **Google search for data**. The project is named after Norwegian explorer Roald Amundsen, the first person to discover the South Pole.

DLFAI & DATA

Amundsen is hosted by the LF AI & Data Foundation. It includes three microservices, one data ingestion library and one common library.

open source

Data Provenance

Why is it important?

- The <u>validity, authenticity and integrity</u> of experiments hinges on ability to reproduce the results consistently
- Ethical data provenance is important to ensure that we do no harm
- Lineage
 - Where data comes from
 - where it goes
 - know when to update for changes
 - how to handle change
 - who is using the data we have

February 9, 2023

ChatGPT is a data privacy nightmare. If you've ever posted online, you ought to be concerned

Uri Gal, University of Sydney

ChatGPT is fuelled by our intimate online histories. It's trained on 300 billion words, yet users have no way of knowing which of their data it contains.

Lineage/Data Provenance

Company Confidential – For Internal Use Only opyright © SAS Institute Inc. All rights reserved

An update from the ML Workflow & Interop Committee dataset license compliance initiative

Howard <huangzhipeng@huawei.com> Liza <u>lizi4@huawei.com</u> Gopi Krishnan Rajbahadur <gopi.krishnan.rajbahadur1@huawei.com>

DLFAI & DATA

Data drift

Ssas

Copyright © SAS Institute Inc. All rights reserved.

Reference Distributi

thu.....

Curation

The process of gathering relevant information to add value through the process of selecting, organizing, and looking after the items in a collection.

Data curation

- Domain expert knowledge
- Shared information about usage

Bias

Early detection is very useful

- Watch for protected groups
- Expert domain knowledge in feature engineering
- Ensure fair and unbiased data collection strategies
- Watch for types of data bias; random is less intrusive than systemic
- Mitigate using techniques such as resampling, augmentation, crossvalidation, improved feature engineering

Agenda

- 1. Why data quality?
- 2. Data cleaning techniques: Dimensions of data quality
- 3. Design considerations for analytical and reporting use cases
- 4. Advanced topics
- 5. Wrap up and summary

Want to learn more?

Check out these links!

- <u>https://www.coursera.org/sas</u> Coursera SAS classes
- <u>https://www.sas.com/en_us/training/overview.html</u> SAS Training website
- Statistics 1: ANOVA, Regression, Logistic Regression -<u>https://support.sas.com/ecst1</u>
- SAS Programming Essentials <u>https://support.sas.com/ecprg1</u>
- Over 200 free tutorials: <u>https://video.sas.com/detail/videos/how-to-tutorials</u>
- SAS OnDemand for Academics
- <u>https://www.sas.com/en_us/software/on-demand-for-</u>
 <u>academics.html#section=5</u>

Questions?

Thank you!

