Assurance of Student Learning Report$\mathbf{2 0 2 2 - 2 0 2 3}$				
Ogden College of Science \& Engineering		Department of Mathematics		
730 Middle Grades Mathematics				
Patrick Brown, Program Coordinator				
Is this an online program? \square Yes \boxtimes No		Please make sure the Program Learning Outcomes listed match those in CourseLeaf . Indicate verification here \square Yes, they match! (If they don't match, explain on this page under Assessment Cycle)		
Use this page to list learning outcomes, measurements, and summarize results for your program. Detailed information must be completed in the subsequent pages. Add more Outcomes as needed.				
Program Student Learning Outcome 1: Effectively communicate mathematical ideas in verbal and written forms.				
Instrument 1	Capstone Project in MATH 490 - Seminar in Middle Grades Mathematics			
Based on your results, check whether the program met the goal Student Learning Outcome 1.			Q Met	\square Not Met
Program Student Learning Outcome 2: Successfully solve a variety of problems using appropriate mathematical tools.				
Instrument 1 Final Exam in MATH 411 - Problem Solving for Elementary \& Middle School Teachers				
Based on your results, check whether the program met the goal Student Learning Outcome 2.			\ Met	\square Not Met
Program Student Learning Outcome 3: Propose and formally prove mathematical conjectures.				
Instrument 1 Final Exam in MATH 403 - Geometry for Middle School Teachers				
Based on your results, check whether the program met the goal Student Learning Outcome 3.			\ Met	\square Not Met
Assessment Cycle Plan:				
During this past year, we have been working on new Student Learning Outcomes. They are now essentially complete, and we are assessing those learning outcomes this cycle, as we discussed in the last cycle. The learning outcomes assessed this cycle do not match the outcomes in CourseLeaf, as we have not had time to update them since finalizing our new goals and metrics this Spring. However, we will be updating our learning outcomes in CourseLeaf as soon as possible in Fall 2023. The 2023/2024 cycle will assess these new objectives as well.				

Program Student Learning Outcome 1

Program Student Learning Outcome	Effectively communicate mathematical ideas in verbal and written forms.			
Measurement Instrument 1	Students work independently with a faculty member on a mathematics research project, culminating in both a final paper and final presentation, in which they are assessed on their ability to effectively communicate mathematics in both verbal and written forms.			
Criteria for Student Success	Students will exhibit the ability to effectively communicate mathematics in verbal and written forms via their final oral presentation and written paper in theis senior seminar class. Students will average a "sufficient"or higher across all assessment domains: Writing of Paper, Delivery of Presentation, Quality of Mathematics, Quantity of Mathematics, Mathematical Accuracy, and Mathematical Understanding.			
Program Success Target for Measurement	his 70% of students will average "sufficient" or higher across all domains on the project rubric.	Percent of Program Achieving Target	100% of stud or higher acro project rubric	ged "sufficient" ains on the
Methods	All students enrolled in the senior capstone course, MATH 490, during the 2022/2023 academic year were assessed.			
Based on your results, highlight whether the program met the goal Student Learning Outcome 1.			Q Met	\square Not Met
Results, Conclusion, and Plans for Next Assessment Cycle (Describe what worked, what didn't, and plan going forward)				
Results: While we expect that this goal is attainable, we had a particulary strong (but small) class of students this year, with 100% of them exceeding the target.				

Conclusions: We've been improving our MATH 490 course for the last few years, including more in-class time to better support students and to help them understand and meet course expectations. We suspect this has helped our success a fair amount. Previously we tried to address this area by including "minicapstone projects" in some other 400 -level courses, but this did not yield the positive impact we thought it would. We do still require students to communicate mathematics in a myriad of ways in those courses, but have moved away from requiring these mini-capstone projects. Going forward, we believe that the best practice is to maintain the rigor we have in the 400 -level courses, and to continue to look for ways to support our students once they hit the capstone course.

Plans for Next Assessment Cycle: We have just completed a substantial redesign of our course goals and meterics over the past year. Our plan for next year is to assess these new goals using the opdated instruments and metrics and then evaluate at the in Spring 2024 to determine whether are measuring the things we set out to measure, and whether those things are the right things to be measuring.

Program Student Learning Outcome 2

| Program Student Learning
 Outcome | Successfully solve a variety of problems using appropriate mathematical tools.
 Measurement Instrument 1
 Final Exam in MATH 411 - Problem Solving for Middle Grades Teachers
 Students in this class learn formal and informal problem solving strategies, and apply these strategies, along with
 mathematical understanding gained in previous coursework, to solve a wide variety of problems. Much like the senior
 seminar course, this course requires students to draw upon skills and concepts from across the program and apply them
 in new and creative ways. |
| :--- | :--- | :--- | :--- | :--- |

Program Student Learning Outcome 3

| Program Student Learning
 Outcome | Propose and formally prove mathematical conjectures. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Measurement Instrument 1 | Final Exam in MATH 403 - Geometry for Middle Grades Teachers
 As the second geometry course students in the Middle Grades Mathematics program take, MATH 403 is a proof-based
 course. Students make conjectures and prove theorems throughout the course, culminating in the final exam. This exam
 assesses students' ability to propose and formally prove mathematical conjectures from across the geometry curriculum,
 making it an especially appropriate instrument for this learning outcome. |

CURRICULUM MAP

Program name:	Middle Grades Mathematics				
Department:	Mathematics				
College:	Science \& Engineering				
Contact person:	Patrick Brown				
Email:	patrick.brown@wku.edu				
KEY:					
$\mathrm{I}=$ Introduced					
R = Reinforced/Developed					
M = Mastered					
A = Assessed					
			Learning Outcomes		
			LO1:	LO2:	LO3:
Course Subject	Number	Course Title	Effectively communicate mathematical ideas in verbal and written forms.	Successfully solve a variety of problems using appropriate mathematical tools.	Propose and formally prove mathematical conjectures.
MATH	136	Calculus I		1	
MATH	183	Introductory Statistics	1	1	
MATH	205	Number Systems and Number Theory for Teachers	1	1	
MATH	206	Fundamentals of Geometry for Teachers	R	R	
MATH	308	Rational Numbers and Data Analysis for Teachers	R	R	
MATH	302	Introduction to Advanced Mathematics for Middle Grades Teachers	R	R	I
MATH	304	Functions, Applications and Explorations	R	R	R
MATH	403	Geometry for Elementary and Middle School Teachers	M	M	M / A
MATH	411	Problem Solving for Elementary and Middle School Teachers	M	M / A	M
MATH	413	Algebra and Technology for Middle Grades Teachers	M	M	M
MATH	490	Seminar in Middle Grades Mathematics	M / A	M	M

Rubric for Learning Outcome 1:

Seminar in Middle Grades Mathematics

Final Paper \& Presentation Rubric

Student Name: \qquad
Committee Member:

The student's final paper and presentation will be evaluated by a committee of mathematics faculty members, including the student's supervising faculty member. The committee shall use the departmental rubric for grading the final products.

For each category, the student will receive a grade of $0-4$ from each committee member, with half-points allowed.
0 - Inadequate 1 - Deficient $\quad 2$-Sufficient $\quad 3$ - Accomplished 4 - Exemplary

Category	Score
Writing of Paper Readability, Structure, Formatting, Style, Grammar, Spelling, Citations, References, Writing Conventions, Length (12-20 pgs.), etc.	
Delivery of Presentation Style, Comfort, Audience Engagement, Flexibility, Tone, etc.	
Quality of Mathematics Appropriateness of Topic/Problem, Level of Difficulty, Originality	
Quantity of Mathematics Student exhibits a body of mathematical work appropriate for a 3 credit, 400-level class in the Middle Grades Mathematics Major	
Mathematical Accuracy Appropriate use of mathematical tools, Lack of errors, etc.	
Mathematical Understanding Evidence that student deeply and thoroughly understands the project, and that the project is student's own work	
Comments:	

The final grade will be the average of all of the scores from all graders, less any deductions*. Letter grades will be assigned as follows:

$$
\begin{array}{lllll}
\mathrm{F}-[0,0.5) & \mathrm{D}-[0.5,1.5) & \mathrm{C}-[1.5,2.5) & \mathrm{B}-[2.5,3.5) & \mathrm{A}-[3.5,4.0]
\end{array}
$$

Rubric for Learning Outcome 2:

MATH 411 - Problem Solving

Each problem will be graded using the following rubric for a total of 10 points per problem.
A. Understand the problem

0 - Completely misinterprets the problem.
1- Misinterprets part of the problem.
2- Shows complete understanding of the problem.
B. Choosing a solution strategy

0 - Does not give evidence of using a strategy or uses a totally inappropriate strategy.
1- Chooses a strategy that could possibly lead to a correct solution or chooses a strategy that will get him or her a partway through the problem but fails to change strategies when appropriate.
2- Chooses a correct strategy that could lead to a correct solution if used without error.
C. Implementing the strategy

0 - Makes no attempt to solve, uses a totally inappropriate strategy, or uses a correct strategy totally incorrectly.
1- Implements a partly correct strategy based on interpreting part of the problem correctly or chooses a correct strategy and implements it poorly.
2- Implements a correct strategy with minor errors or no errors.
D. Getting the Answer

0- Gets no answer, fails to state the answer, or gets a wrong answer based on an inappropriate solution strategy
1- Makes copying error or computation error, gets partial answer to a problem with multiple answers, or labels answer incorrectly.
2- Gets correct answer, states it, and labels it properly.
E. Giving an explanation of your thinking

0 - Makes no explanation or incoherent explanation,
1- Gives an incomplete explanation, or the explanation is hard to follow.
2- Gives a clear, coherent, complete explanation.

MATH 403: Geometry for Elem/Middle Grades Teachers 10-Point Rubric

Rubric for proof-based problems:

10	8	5	2	0
Surpasses Standard (Mastery plus Connections)	Meets Standard (Mastery)	Approaching Standard	Not Yet Approaching Standard	No Attempt
Demonstrates complete understanding. A correct and complete proof is given. Some irrelevant information may be included but does not affect the intended proof.	Demonstrates complete understanding. A correct approach to proving the theorem is attempted. Some statements may be unjustified or improperly justified, but errors are minor and could be fixed given time to polish the proof.	Demonstrates understanding of theorem to be proved, but proof is incomplete or does not prove the intended result. Statements linked into a reasonable (though perhaps misguided) attempt to prove the theorem. The proof may be left	Attempts the proof but demonstrates little	Product does not address the assignment, is off topic, or was not submitted.

