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Abstract

This paper presents a copula-based sample selection model where the out-
come variable follows a �nite mixture speci�cation. The estimation approach
relies on standard maximum likelihood methods, and thus is relatively easy to
implement. A series of Monte Carlo simulation studies vouch for the perfor-
mance of the proposed model. An empirical application explores the e¤ects
of hearing impairments on wage earnings of females. Results �nd that hear-
ing impairments lead to substantial wage reductions among approximately 24
percent of females characterized by high earnings and high educational at-
tainment. However, among approximately 76 percent of females with lower
earnings and lower educational attainment, hearing impairments do not ap-
pear to harm wage earnings.
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1 Introduction

This paper develops a copula-based �nite mixture model that accommodates sample

selection, sometimes called �incidental truncation,� in the outcome variable. The

proposed speci�cation combines elements of �nite mixture setups (Heckman and

Singer, 1984; Aitken and Rubin, 1985) with copula-based selection models (Lee,

1983; Smith, 2003). The estimation approach relies on standard maximum likelihood

methods, and thus is relatively easy to implement. A series of Monte Carlo simulation

studies vouch for the performance of the proposed model. Finally, an empirical

application explores the e¤ects of hearing impairments on wage earnings of females,

where wage earnings are observed only for females with positive earnings.

Finite mixture models provide an attractive modeling choice when observations in

an estimation sample belong to di¤erent �groups,�with dependent variables following

group-speci�c distributions. McLachlan and Peel (2004) provide a survey of the

statistical literature on those methods. The economics literature provides many

applications in labor (Heckman, Robb, and Walker, 1990; Geweke and Keane, 1997),

development (Morduch and Stern, 1997; Alfo, Trovato, and Waldmann, 2008), and

health care usage (Deb and Trivedi, 1997), among many others.

For example, in the empirical application considered in this paper, wage earning

females might fall into, say, two groups. In one of those groups, hearing impairments
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might correlate with reduced wages, while in the other group, hearing impairments

might not a¤ect earnings. Such a pattern would be evident if person-to-person

communication for jobs in the second group could e¤ectively operate in written

forms.

But as with many econometric tools, the introduction of some complexity, like

�nite mixtures, often precludes inclusion of other intricacies, although researchers

have made some headway blending �nite mixtures into larger modeling situations.

For example, �nite mixture setups have been incorporated into simultaneous equation

speci�cations (Mroz, 1987) and models with endogenous righthand side regressors

(Conway and Deb, 2005). Some of those innovations have made their way into

commercial statistical software (see the newly-added suite of fmm estimators in Stata

15).

But to date, �nite mixtures have not been incorporated into selection frameworks.

The main reason is that selection models require jointly modeling (1) a selection

equation and (2) an outcome equation. And if one of those equations has a �nite

mixture setup, the joint distribution of both parts, required for maximum likelihood

estimation of selection models, becomes unwieldy. This paper sidesteps that obstacle

by using copula functions.

The following two sections, in addition to introducing notation used throughout
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this study, discuss �nite mixture models and copula-based selection speci�cations.

The paper then proceeds to combine those ideas into what this paper calls a copula-

based �nite mixture sample selection model. After presenting that model and testing

its performance, the empirical application in this paper �nds that hearing impair-

ments lead to substantial wage reductions among approximately 24 percent of females

characterized by high earnings and high educational attainment. However, among

approximately 76 percent of females with lower earnings and lower educational at-

tainment, hearing impairments do not appear to harm wage earnings. Therefore,

the �ndings potentially o¤er policymakers important information to better target

policies designed to assist people with hearing problems.

2 Basics of Finite Mixture Models

For a data sample i = 1; :::; n, let yi be an outcome variable of interest, and let xi be

a vector of exogenous explanatory variables. For example, the empirical application

explored in this paper considers a sample of females for which the outcome yi denotes

(log) annual wage earnings, and the main explanatory variable of interest included

in the vector xi is a binary indicator for whether the female has a hearing problem.

(Section 6 argues that hearing impairments are relatively exogenous physical condi-

tions.) The aim is to determine the extent, if any, to which hearing problems a¤ect

wage earnings.
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Let the probability density function (pdf) of yi be speci�ed as

f(yij
)

where 
 includes all estimable parameters contained in f(�), including regression

coe¢ cients attached to xi and ancillary parameters such as standard deviations.

Those estimable parameters may be estimated by �nding their values that maximize

the log likelihood function, X
i
ln f(yij
):

However, many economic outcomes of interest, especially in micro data, do not

adhere to one distribution, but rather a mixture of distributions. In those cases, the

pdf of the outcome variable might more accurately be expressed as

X
c
�cfc(yij
c)

where fc(�) denotes each component pdf, and the terms �c represent the probabilities

of belonging to each component, where
P

c �c = 1. Then the estimable parameters

in each component and the mixing probabilities may be simultaneously estimated by

�nding their values that maximize the log likelihood function

X
i
ln
X

c
�cfc(yij
c): (1)

As with standard maximum likelihood settings, the likelihood function (1) can be
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maximized using iterative Newton-type methods, with standard errors obtained using

the familiar likelihood-based formulas.

Along with the component-speci�c parameters 
c, the procedure also yields es-

timates of the mixing probabilities �c, o¤ering evidence about what proportion of

observations belong to each component. However, the procedure does not provide

direct information about how those components di¤er from each other, nor does the

procedure indicate the component to which a speci�c observation i belongs. That

information can be approximated, after estimation, by applying a version Bayes�

formula,

Pr(Component = c j xi) =
b�cfc(yijb
c)X
c
b�cfc(yijb
c) ; (2)

where circum�exes indicate converged parameter estimates obtained by maximum

likelihood. Using the calculated probabilities obtained from equation (2), one then

may assign data observations to speci�c components using some classi�cation criteria

in order to investigate how those components di¤er.

3 Copula-Based Selection Models

This section reviews standard selection models and their copula extensions. The sec-

tion includes su¢ cient detail to keep this paper relatively self-contained, but readers

seeking further exposition should consult Smith (2003) and Zimmer (2018).
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3.1 Standard selection model

The standard selection model setup (Heckman, 1979), speci�es two equations, both

with latent variable outcomes. One equation relates to the outcome of interest,

while the other concerns selection. Couched in terms of the empirical application

considered below, let y�1i denotes female i�s propensity to work, with the observed

selection variable taking the form

y1i =

�
1 if y�1i > 0
0 if y�1i � 0

:

Let y�2i denote female i�s annual (log) wage earnings. Those wage earnings are ob-

served only for females who work, implying that the observed outcome variable takes

the form

y2i =

�
y�2i if y�1i > 0
� if y�1i � 0

:

Thus, the outcome of interest y2i is observed when y1i = 1, but y2i is missing when

y1i = 0.

The two latent equations comprising the full selection model take the form

y�1i = z
0
i
 + "1i

y�2i = x
0
i� + "2i

(3)

with the goal being consistent estimation of the coe¢ cients � in the outcome equa-

tion. Correlation between the errors ("1; "2) imparts bias on estimates of � if the
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selection problem is ignored. Technically, the coe¢ cients � are identi�ed via non-

linear distributional assumptions even when the vectors xi and zi contain the same

explanatory variables. For more robust identi�cation, however, many economic ap-

plications use �exclusions restrictions,�which are variables present in zi but excluxed

from xi.

Maximum likelihood estimation (MLE) of the parameters in (3) requires the joint

distribution of the latent outcomes (y�1i; y
�
2i). Let the cumulative distribution function

(cdf) of that joint distribution be F (y�1i; y
�
2i), with marginal cdfs F1(y

�
1i) and F2(y

�
2i)

and corresponding marginal pdfs f1(y�1i) and f2(y
�
2i). Then the (unlogged) likelihood

function of the selection model takes the form

L =
Y

0
Pr(y�1i � 0)

Y
1
Pr(y1i > 0) f2j1(y2ijy�1i > 0)

where f2j1 is the density function of y�2i given y
�
1i > 0. The subscripts on the product

operators indicate multiplication over observations for which y1i = 0 and y1i = 1.

The conditional density f2j1 is equal to 1
Pr(y�1i>0)

@
@y2
(F2(y2i) � F (0; y2i)) so that the

likelihood function can be re-expressed as

L =
Y

0
F1(0)

Y
1

�
f2(y2)�

@

@y2
F (0; y2)

�
(4)

where the subscript i has been dropped for notational brevity.

The standard selection setup speci�es the joint distribution F (0; y2) as bivari-

ate normal and the marginals F1(0) and f2(y2) as univariate normal. Then, cal-
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culating the natural logarithm of (4) and summing over all observations gives the

log-likelihood function.

3.2 Forming joint distributions with copulas

Imposing joint normality on F (y�1; y
�
2) allows one to write the likelihood in the form

of equation (4), but that normality assumption also imposes normality on the mar-

ginals. Sklar�s Theorem (1973), however, allows for the construction of a multivariate

distribution based on non-normal marginals. Thus, using the marginal distributions

F1(y
�
1) and F2(y

�
2) as arguments, a copula function, denoted C(�), allows for a repre-

sentation of the joint distribution as

F (y�1; y
�
2) = C(F1(y

�
1); F2(y

�
2); �)

where � is the copula dependence parameter. The practical bene�t of copulas is that,

while researchers often know marginal behaviors of individual variables, they have

less familiarity with joint relationships. Copulas, therefore, allow researchers to form

those higher-dimensional relationships based on the easier-to-formulate univariate

marginals.

The most widely-used copula, called the Normal or Gaussian copula, assumes the

form

F (y�1; y
�
2) = �B(�

�1(F1(y
�
1));�

�1(F2(y
�
2)); �) (5)
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where �B denotes the bivariate standard normal cdf, and ��1 represents the quantile

function of the standard normal distribution.

3.3 Copula selection models

The normality assumptions commonly imposed in (4) have long been acknowledged

as potential sources of misspeci�cation (Goldberger, 1983). A large literature has

emerged to relax those assumptions. One strand of that literature, started by Lee

(1983) and later generalized by Prieger (2002) and Smith (2003), uses copula func-

tions in place of the most di¢ cult part of (4), the joint distribution F (0; y2). Using

the Normal copula (5) for that joint distribution yields the (unlogged) likelihood

function (Smith, 2003),

L =
Y

0
F1(0)

Y
1
f2(y2)

 
1� �

 
��1(F1(0))� ���1(F2(y2))p

1� �2

!!
:

And if the selection equation for y1 follows a probit speci�cation, as seems natural in

many economic applications, then the (log) likelihood function, after reintroducing

observation-speci�c subscripts, takes the form

lnL = (1� yi1) ln(1� �(Z0i
)) + yi1 ln f2(yi2) (6)

+yi1 ln

 
1� �

 
��1(1� �(Z0i
))� ���1(F2(y2))p

1� �2

!!
:

Written in this form, the main modeling decision involves specifying the marginal

pdf and cdf of the outcome, f2(yi2) and F2(yi2). If those marginals are normal, then
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this model is identical to the Heckman-style selection model to be estimated by

MLE. But the copula form of selection model allows greater �exibility in that it can

accommodate any valid form for the marginal distribution of the outcome, including,

as outlined in the following section, settings in which the marginal distribution for

y2 follows a �nite mixture speci�cation.

The derivation in this subsection uses the Normal copula. To be sure, the sta-

tistics literature o¤ers many o¤-the-shelf copula functions useful for empirical ap-

plications, but, unfortunately, most of those have restrictive dependence patterns

that make them unappealing for selection problems. For example, the widely-used

Clayton, Gumbel, and Joe copulas only permit positive dependence (� > 0). And

although the Farlie-Gumbel-Morgenstern and Ali-Mikhail-Haq copulas permit both

positive and negative dependence, their ranges of dependence are relatively limited

in the sense that neither permits the full range of Fréchet dependence. Any restric-

tions placed on � are problematic, because, for selection models, that dependence

term captures the direction and magnitude of selection bias, which is often di¢ cult

to know a priori. In order to remain agnostic about the direction and magnitude of

selection bias, this paper suggests using either the Normal or Frank copulas, both of

which permit the full range of Fréchet dependence. Owing to its familiarity and ease

of coding, this paper opts for the Normal.
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4 Copula-Based Finite Mixture Sample Selection
Model

As noted in the previous subsection, in contrast to standard selection setups, copula-

based selection models allows the marginal distribution of the outcome variable to

assume any form. This paper exploits that �exibility by letting the outcome variable

follow a �nite mixture setup.

Using notation introduced earlier in this paper, let the pdf and cdf of the outcome

take the forms

f2(yi2) =
X

c
�cfc(yi2j
c) (7)

F2(yi2) =
X

c
�cFc(yi2j
c): (8)

In sum, the copula-based �nite mixture sample selection model substitutes (7) and

(8) into the log likelihood function given in (6).

The �nal modeling decision involves the number and the forms of component dis-

tributions in the �nite mixture part of the model. In practice, �nite mixtures with

two components often have appealing economic interpretations, and two-component

models lessen the convergence and over�tting issues common in mixtures with more

components (Deb and Trivedi, 1997). Thus, the applications below use two compo-

nents. Furthermore, for many microeconometric applications, it seems plausible to

let the component distributions come from the same family, but with component-
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speci�c parameters 
c. Because the outcome in the empirical application presented

below, log annual earnings, appears approximately normal, estimates below use nor-

mal distributions for both components. Thus, the pdf and cdf are expressed as

f2(yi2) = �f1(yi2jx0i�1; �1) + (1� �)f2(yi2jx0i�2; �2)

F2(yi2) = �F1(yi2jx0i�1; �1) + (1� �)F2(yi2jx0i�2; �2)

where f and F are the pdf and cdf of the normal distribution with component-speci�c

means x0i�c and standard deviations �c. Then the full set of estimable parameters

is (
;�1; �1;�2; �2; �; �), where 
 represents the vector of slopes attached to the

regressors zi in the selection equation, and � is the copula dependence term that

captures the direction and magnitude of selection.

5 Simulation Study

This section conducts a set of Monte Carlo experiments designed to gauge the per-

formance of the proposed copula-based �nite mixture sample selection model. The

experiments specify a selection equation given by

y1i = 1(
0 + 
0xi + 
2zi + "1i > 0)

where x and z are drawn from (independent) standard normal distributions, and

remain �xed throughout each replication of each experiment. The notation 1() indi-
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cates that the selection variable y1i equals 1 if the condition in parentheses is true,

and 0 otherwise.

The outcome equation follows a �nite mixture setup

component 1: y2i = �10 + �11xi + "2i

component 2: y2i = �20 + �21xi + "2i:

In all experiments, the probability that an observation belongs to component 1 is

0.60, implying a 0.40 probability of belonging to component 2. The selection problem

arises from (i) the disturbances being jointly distributed as

�
"1i
"2i

�
� N

��
0
0

�
;

�
1 0:5
0:5 1

��
;

and from (ii) y2i being set to missing when y1i equals 0.

The experiments set the sample size to 10,000 and use 500 replications. For each

replication, the disturbance terms are drawn from the aforementioned bivariate nor-

mal distribution, which produces new realizations for y1i and y2i for each replication.

Using those simulated data, the copula-based �nite mixture sample selection model

is estimated as speci�ed in the previous section. A similar �nite mixture model that

ignores the selection problem also is estimated for sake of comparison.

Table 1 shows means and standard deviations of the 500 replications, along with

�true�values of the parameters. Recognizing that the main focus of this paper is
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the coe¢ cients attached to explanatory variables in the outcome part of the model

(�11 and �21), the model that ignores selection appears to badly misestimate those

parameters. The copula-based �nite mixture sample selection model, by contrast,

appears to more accurately estimate those values. In fact, the selection model ap-

pears to satisfactorily estimate most parameters, the exception being the copula

dependence parameter at the bottom of the table. However, for the dependence

parameter, the �true�value re�ects the overall correlation between the error terms

"1i and "2i, with the mixture part of the model then splitting the second error term

into two distributions, each with di¤erent values for the �rst two moments, and each

with di¤erent proportional contributions to the overall mixture. Thus, it becomes

di¢ cult to compare the estimated dependence parameter to its �true�value.

For the experiments in Table 1, approximately 20 percent of observations have

missing values for y2i. Does the model�s performance su¤er when more observations

are missing? To explore that possibility, Table 2 shows a similar experiment where


0 is set to 0.50, rendering approximately 33 percent of observations missing. Con-

tinuing that trend, Table 3 then sets 
0 equal to 0.00, meaning approximately 50

percent of observations are missing. Those tables show that, as the percentage of

missing observations increases, the performance of the model that ignores selection

becomes progressively worse, highlighted by the parameters of interest (�11 and �21)
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moving farther from their true values. The performance of the selection model, how-

ever, does not appear to su¤er. It should be noted that, as the percentage of missing

observations increases, Newton�s method seems to require more iterations. Nonethe-

less, the selection model always manages to achieve convergence on each replication,

regardless of the number of missing observations.

Table 4 returns to the original true values from Table 1, but it removes the variable

z from the selection equation. Eliminating that variable means that identi�cation

comes solely from the nonlinear functional forms built into the model. The selection

model appears to perform satisfactorily, but that should not be interpreted as an

endorsement of models that lack exclusion restrictions. The satisfactory performance

in Table 4 could be a consequence of the true values selected for the experiment, but

even so, selection models without exclusion restrictions often become di¢ cult to

interpret through the lens of economic theory. Good practice still suggests �nding

appropriate exclusion restrictions.

6 Empirical Application

This section seeks to estimate the e¤ects of hearing impairments on annual wage

earnings among females. The presence of a hearing impairment should be relatively

exogenous with respect to earnings, because most causes of hearing impairments

stem from sources outside a person�s control, such as non-contagious infections,
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birth defects, genetics, and aging (Ko­ er, Ushakov, and Avraham, 2015). How-

ever, if unmeasured individual-speci�c factors that lead a person into employment

also correlate with earnings potential, then estimators that ignore such selectivity

might misrepresent the true link between hearing problems and earnings.

6.1 Data

Data come from the 2012, 2013, 2014, 2015, 2016, and 2017 Annual Social and Eco-

nomic Supplement (ASEC) of the Current Population Survey (CPS). The estimation

sample focuses on females ages 25-64 who do not report themselves as self employed.

The �nal estimation sample includes n = 298,064 observations.

The outcome variable is annual wage earnings, converted to 2017 dollars using

the Consumer Price Index. The main explanatory variable of interest is a dummy

indicator for whether the person reports any di¢ culty hearing. Table 5 reports

sample means, partitioned by hearing status. Females with hearing problems appear

to have lower wages, and females with hearing problems also are less likely to have any

wages. That pattern of labor market participation opens the possibility of selection

bias if one�s goal is to assess the impacts of hearing impairments on wage earnings.

The remainder of the table shows means for control variables. Of particular note,

the bottom two rows show the number of children under 5 and the number of children

5 or older present in the household. Following past studies that estimate selection
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models of female wages (Mroz, 1987), the selection models estimated here use those

two variables as exclusion restrictions, meaning they appear as explanatory variables

in the selection equation but not in the outcome wage equation.

6.2 Estimates

Table 6 reports estimates that ignore the selection problem, focusing only on females

with positive wage earnings. The left panel, which reports OLS results, shows that

hearing impairments correlate with an approximate 25 percent reduction in wage

earnings. The right panel, using a �nite mixture setup, provides evidence that the

sample consists of two components, with 21 percent of females belonging to the

�rst component, and the remaining 79 percent coming from the second component.

Although hearing impairments associate with reduced wage earnings in both com-

ponents, the magnitude appears much larger among the 21 percent of females in the

�rst component. That �rst component shows a 66 percent reduction in wage versus

a 7.5 percent reduction in the second component.

Table 7 shows estimates from a Heckman-style selection model, estimated by

maximum likelihood. The selection term (�) is negative, large in magnitude, and

precisely estimated. The implication is that unmeasured attributes that correlate

with increased labor market participation also tend to associate with reduced wages.

Accounting for that selection yields a positive link between hearing problems and
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wage earnings. Also of note is that the two exclusions restrictions �number and

children under 5 and number of children 5 or older �both appear to signi�cantly

and nontrivially reduce the likelihood of positive earnings in the selection equation.

Finally, Table 8 presents results for the copula-based �nite mixture sample selec-

tion model proposed in this paper. The copula dependence parameter (�), analogous

to the term � in the previous paragraph, �nds negative, large, and precisely esti-

mated evidence of selection. The �nite mixture part of the model estimates that 24

percent of females belong to the �rst component, which is similar to the nonselection

estimate reported in Table 6. The �nite mixture part of the model also �nds that,

among the �rst component, hearing problems lead to a 34 percent reduction in wages.

For the other 76 percent of females who belong to the second component, hearing

problems correlate with an approximate 9.8 percent increase in wages. Thus, to the

extent that hearing problems reduce wage earnings among females, that harm, while

large in magnitude, appears to be concentrated among approximately 24 percent of

females.

6.3 Characteristics of the components

Finite mixture models separate samples into components, but they do not inform

upon which observations come from which component. But, after estimation, �nite

mixture models do allow one to calculate the probability that an observation belongs
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to a particular component, using the expression given in equation (2). Using that

formula and the estimated values presented in the �nite mixture part of the model in

Table 8, observations with calculated probabilities of belonging to the �rst component

larger than 0.50 are assigned to the �rst component, and subjects with probabilities

less than 0.50 are assigned to the second component. (The distribution of calculated

probabilities is heavily bimodal, with little mass at 0.50. Thus, di¤erent cuto¤values

do not alter the main �ndings.)

Table 9 presents sample means partitioned by assigned components. The most

important �nding is that females who likely belong to the �rst component have sig-

ni�cantly higher wage earnings, and also higher levels of educational attainment,

compared to their counterparts assigned to the second component. Recalling that

the �rst component consists of the approximately 24 percent of females for whom

hearing problems lead to large reductions in earnings, the implication is that hearing

problems have the largest proportional e¤ects among high earning, and highly edu-

cated, females. Hearing impairments do not appear to harm wage earnings among

lower earning, and less educated, females.

7 Conclusion and Practical Considerations

This paper presents a copula-based �nite mixture sample selection model. The model

is relatively easy to code, as it relies upon standard maximum likelihood methods
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and the optimizers often employed with those methods. An empirical application

considers the e¤ects of hearing impairments on female wage earnings. Results �nd

that hearing impairments lead to substantial wage reductions among approximately

24 percent of females characterized by high earnings and high educational attainment.

However, among approximately 76 percent of females with lower earnings and lower

educational attainment, hearing impairments do not appear to harm wage earnings.

Finite mixture models, in general, and the selection versions proposed here, in

particular, warrant a few notes of caution. First, although �nite mixture speci-

�cations can handle more than the two-component scenarios presented here, the

Newton-type optimizers tend to encounter more �at spots and areas of nonconcavity

on the likelihood surface. Furthermore, adding more components risks over�tting, as

some components might capture a small proportion of observations. Thus, unless a

researcher has strong reasons for pursuing more components, two-component setups

have intuitive and practical appeal (Deb and Trivedi, 1997).

Even in two-component settings, �nite mixture models might exhibit local op-

tima on the likelihood surface. Changing starting values is a useful, albeit informal,

method for checking whether estimates adhere to the global optimum. Finally, �nite

mixture speci�cations, especially the selection-based version presented in this paper,

seem to perform better with larger datasets. Trying to identify components and
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selection e¤ects in small data settings proved onerous in preliminary explorations.

That is the main reason the sample sizes used in this paper are relatively large.
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Table 1: Means (standard deviations) from experiment 1,
approximately 20 percent missing outcome observations,
(n = 10,000; replications = 500)

true Ignoring selection Selection model
Component 1 �10 10.0 10.12 10.03

(0.02) (0.03)
�11 0.25 0.34 0.28

(0.05) (0.06)
�1 1.0 0.95 0.98

(0.02) (0.03)
Compontent 2 �20 10.0 10.23 10.05

(0.04) (0.04)
�21 �0.50 �0.42 �0.51

(0.09) (0.09)
�2 1.0 0.95 0.97

(0.03) (0.04)
Probability of component 1 � 0.60 0.63 0.60

(0.08) (0.09)
Selection equation 
0 1.0 � 1.00

(0.02)

1 �0.60 � �0.60

(0.02)

2 �0.10 � �0.10

(0.02)
Copula dependence � 0.50 � 0.38

(0.10)
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Table 2: Means (standard deviations) from experiment 2,
approximately 33 percent missing outcome observations,
(n = 10,000; replications = 500)

true Ignoring selection Selection model
Component 1 �10 10.0 10.23 10.06

(0.03) (0.06)
�11 0.25 0.37 0.29

(0.05) (0.07)
�1 1.0 0.93 0.97

(0.02) (0.04)
Compontent 2 �20 10.0 10.33 10.09

(0.04) (0.10)
�21 �0.50 �0.39 �0.50

(0.09) (0.10)
�2 1.0 0.93 0.96

(0.04) (0.04)
Probability of component 1 � 0.60 0.63 0.61

(0.08) (0.09)
Selection equation 
0 0.50 � 0.50

(0.01)

1 �0.60 � �0.60

(0.02)

2 �0.10 � �0.10

(0.01)
Copula dependence � 0.50 � 0.36

(0.11)
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Table 3: Means (standard deviations) from experiment 3,
approximately 50 percent missing outcome observations,
(n = 10,000; replications = 500)

true Ignoring selection Selection model
Component 1 �10 10.0 10.37 10.12

(0.03) (0.11)
�11 0.25 0.40 0.30

(0.05) (0.08)
�1 1.0 0.92 0.97

(0.02) (0.05)
Compontent 2 �20 10.0 10.46 10.16

(0.05) (0.14)
�21 �0.50 �0.36 �0.49

(0.10) (0.12)
�2 1.0 0.92 0.95

(0.04) (0.05)
Probability of component 1 � 0.60 0.63 0.63

(0.08) (0.08)
Selection equation 
0 0.00 0.00

(0.01)

1 �0.60 � �0.60

(0.01)

2 �0.10 � �0.10

(0.01)
Copula dependence � 0.50 � 0.33

(0.13)
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Table 4: Means (standard deviations) from experiment 4,
approximately 20 percent missing outcome observations,
no exclusion restriction,
(n = 10,000; replications = 500)

true Ignoring selection Selection model
Component 1 �10 10.0 10.12 10.03

(0.02) (0.04)
�11 0.25 0.34 0.28

(0.05) (0.06)
�1 1.0 0.95 0.98

(0.02) (0.03)
Compontent 2 �20 10.0 10.23 10.07

(0.04) (0.08)
�21 �0.50 �0.42 �0.50

(0.09) (0.10)
�2 1.0 0.95 0.97

(0.03) (0.04)
Probability of component 1 � 0.60 0.63 0.61

(0.08) (0.09)
Selection equation 
0 1.0 � 1.00

(0.02)

1 �0.60 � �0.60

(0.02)
Copula dependence � 0.50 � 0.35

(0.13)
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Table 5: Sample means

Hearing problem No hearing problem

n = 3,523 n = 294,541

Wage (if any) 34,636 42,870�

Any wage? 0.47 0.71�

Black 0.11 0.13�

Hispanic 0.14 0.18�

Married 0.44 0.60�

Metropolitan residence 0.74 0.82�

Age 49.9 43.7�

Less than high school (omitted) � �
Highest education is high school 0.01 0.01

Highest education is some college 0.31 0.29�

Highest education is college 0.21 0.35�

Number of children in household under 5 0.09 0.21�

Number of children in household 5 or older 0.63 0.97�

* indicates that �No hearing problem�mean di¤ers from �Hearing problem�mean at p < .05
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Table 6: Log wage regressions where wage > 0, no correction for selection

OLS Finite mixture
Comp 1 Comp 2

Hearing problem �0.253� �0.664� �0.075�
(0.023) (0.090) (0.017)

Black �0.061� �0.028 �0.086�
(0.006) (0.026) (0.004)

Hispanic �0.136� �0.035 �0.166�
(0.006) (0.024) (0.004)

Married 0.002 �0.103� 0.035�

(0.004) (0.018) (0.003)
Metropolitcan residence 0.178� 0.237� 0.177�

(0.005) (0.022) (0.004)
Age 0.068� 0.112� 0.053�

(0.002) (0.007) (0.001)
Age squared �0.001� �0.001� �0.001�

(0.000) (0.000) (0.000)
Education - high school �0.186� �0.136 �0.175�

(0.022) (0.086) (0.016)
Education - some college 0.263� 0.212� 0.276�

(0.005) (0.022) (0.004)
Education - college 0.771� 0.847� 0.748�

(0.005) (0.021) (0.004)
Constant 8.180� 6.250� 8.737�

(0.035) (0.139) (0.025)

Probability of component 1 0.206�

(0.002)

Standard errors in parentheses, * p < .05
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Table 7 �Selection model

wage equation selection equation

Hearing problem 0.134� � 0.428�
(0.024) (0.021)

Black � 0.030� � 0.073�
(0.007) (0.007)

Hispanic � 0.068� � 0.116�
(0.007) (0.006)

Married 0.113 � 0.109
(0.005) (0.005)

Metropolitcan residence 0.198� � 0.016�
(0.006) (0.006)

Age 0.013� 0.077�

(0.002) (0.002)
Age squared 0.000 � 0.001�

(0.000) (0.000)
Education - high school � 0.060� � 0.106�

(0.024) (0.021)
Education - some college 0.037� 0.325�

(0.006) (0.006)
Education - college 0.429� 0.510�

(0.006) (0.006)
Number of children under 5 � � 0.143�

(0.004)
Number of children 5 or older � � 0.048�

(0.002)
Constant 9.760� � 0.910�

(0.039) (0.040)

� � 0.928�
(0.001)

Standard errors in parentheses, * p < .05
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Table 8 �Copula-based �nite mixture sample selection model
wage equation selection equation

Comp 1 Comp 2
Hearing problem �0.340� 0.098� �0.537�

(0.085) (0.019) (0.022)
Black 0.042 �0.075� �0.065�

(0.027) (0.005) (0.008)
Hispanic 0.052� �0.144� �0.115�

(0.024) (0.005) (0.007)
Married 0.027 0.081� �0.125�

(0.019) (0.004) (0.005)
Metropolitcan residence 0.242� 0.183� �0.030�

(0.023) (0.004) (0.006)
Age 0.066� 0.029� 0.092�

(0.007) (0.001) (0.002)
Age squared �0.001� �0.0002� �0.001�

(0.000) (0.000) (0.000)
Education - high school �0.013 �0.138� �0.142�

(0.085) (0.018) (0.022)
Education - some college �0.050� 0.189� 0.369�

(0.022) (0.005) (0.006)
Education - college 0.454� 0.607� 0.597�

(0.022) (0.005) (0.006)
Number of children under 5 � �0.235�

(0.005)
Number of children 5 or older � �0.072�

(0.002)
Constant 8.026� 9.403� �1.063�

(0.144) (0.030) (0.043)

� 1.756� 0.566�

(0.011) (0.002)

Probability of component 1 0.240�

(0.003)

� �0.711�
(0.007)

Standard errors in parentheses, * p < .05
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Table 9 �Component-speci�c means,
based on calculated component probabilities from estimates reported in Table 8

Comp 1 Comp 2

Wage 45,721 6,281�

Black 0.13 0.13

Hispanic 0.16 0.21�

Married 0.58 0.62�

Metropolitcan residence 0.82 0.81�

Age 43.0 45.0�

Education - high school 0.01 0.02�

Education - some college 0.30 0.27�

Education - college 0.40 0.26�

* indicates that �Component 2�mean di¤ers from �Component 1�mean at p < .05
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