k-Primal Spaces

Ahlem Ben Amor^a, Sami Lazaar^b, Tom Richmond^{c,*}, Houssem Sabri^d

^aGafsa University, Preparatory Institute for Engineering Studies of Gafsa. benamor_ahlem@yahoo.com

 $^b\mathit{Taibah}$ University, Faculty of Sciences Madina. salazaar
72@yahoo.fr

^c Western Kentucky University, Bowling Green, KY 42101 USA. tom.richmond@wku.edu
^d Faculty of Sciences of Tunis, Department of Mathematics, 2092 Campus Universitaire El
Manar. sabri.houssem@gmail.com

Abstract

A function $f : X \to X$ determines a topology $\mathcal{P}(f) = \{U \subseteq X : f^{-1}(U) \subseteq U\}$. A topological space (X, τ) is *primal* (or *functional Alexandroff*) if $\tau = \mathcal{P}(f)$ for some function f, and is k-primal if τ is the supremum of a set of k primal topologies on X. Using the associated specialization quasiorder, we give necessary and sufficient conditions for a finite topological space to be k-primal. We show that the k-primal topologies on a finite set X form a lattice and discuss lattice complements.

Keywords: Alexandroff space, functional Alexandroff space, *k*-primal space, primal space, quasiorder, 2010 MSC: 54A10, 54C99, 54D80, 06F30

1. Introduction

In 1937, Alexandroff [] studied topologies whose closed sets also form a topology, or equivalently, topologies in which arbitrary intersections of open sets are open. Such topologies are now called Alexandroff topologies. Since every topology on a finite set is obviously an Alexandroff topology, Alexandroff spaces are widely used in computer sciences.

The most fundamental property of Alexandroff spaces is that the category **Alx** of Alexandroff spaces with continuous maps is isomorphic to the category **Qos** of qosets (that is, quasiordered sets) with order-preserving maps. Any Alexandroff topology τ on X gives a quasiorder \leq_{τ} on X by taking

 $x \leq_{\tau} y$ if and only if x is in the τ -closure $\overline{\{y\}}^{\tau}$ of y,

and by the same correspondence every quasiorder \leq on X gives an Alexandroff topology τ_{\leq} on X. The τ -closed sets are the \leq -decreasing sets, and in particular, $\overline{\{x\}} = \downarrow x = \{y \in X : y \leq x\}$. Every point x in an Alexandroff topology has a

^{*}Corresponding author

smallest neighborhood $N(x) = \uparrow x = \{y \in X : x \leq y\}$. Given an Alexandroff space X, we will interchangeably identify it by its topology or its associated "specialization" quasiorder. The specialization quasiorder \leq_{τ} is a partial order if and only if τ is T_0 . For further details and applications, see 114, 15, 24, 25.

Any function $f: X \to X$ determines a topology $\mathcal{P}(f)$ on X by taking the open sets to be those sets $U \subseteq X$ with $f^{-1}(U) \subseteq U$, or equivalently, by taking the closed sets to be those sets C with $f(C) \subseteq C$. Thus, the $\mathcal{P}(f)$ closed subsets of X are those sets invariant under f. A topological space (X, τ) is primal if $\tau = \mathcal{P}(f)$ for some function $f: X \to X$. Primal spaces were introduced independently by Ayatollah Zadeh Shirazi and Golestani [2] in 2011 and by Echi [9] in 2012. In [2], primal spaces are called functional Alexandroff space. Properties of these spaces have been extensively studied in the ten years since their introduction [3] [5] [10, [12, [18] [19] [20] [21] [22]. In a primal space $(X, \mathcal{P}(f))$, the specialization quasiorder is denoted \leq_f , and the closure of a point x is the orbit $\{f^n(x): n \in \mathbb{N}\}$, where $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Here, we study k-primal topologies, which are the supremum of k primal topologies. In Section 2, we recall the Dushnik–Miller dimension, introduce the primal dimension of a finite partially ordered set and show some connections between them. Section 3 shows that a topology with finite specialization qoset (X, \leq) is k-primal for some integer k if and only if for any cyclic point a and any $x, y \in X$ such that $a \leq y$ and $x \leq y$, we have $a \leq x$. Section 4 shows that the topologies on a finite set which are k-primal for some positive integer k form a complemented lattice.

2. Counting and dimension

In this paper, we consider k-primal spaces, defined below.

Definition 2.1. For any positive integer k and any family $\{f_i : 1 \le i \le k\}$ of functions from a set X to itself, let \le_{f_i} be the specialization quasiorder for $(X, \mathcal{P}(f_i))$. We define the k-primal topology $\mathcal{P}(f_1, \ldots, f_k)$ to be the topology having specialization quasiorder $\le_{f_1,\ldots,f_k} = \bigcap\{\le_{f_i}: 1 \le i \le k\}$. Thus, $x \le_{f_1,\ldots,f_k}$ y if and only if $x \le_{f_i} y$ for each $i = 1, \ldots, k$. A k-primal space is a set X with a k-primal topology.

Clearly, if k = 1 we have the notion of primal spaces, and for any natural number $k \neq 0$, a k-primal space is (k + 1)-primal.

Since \leq_{f_1,\ldots,f_k} is the intersection of the quasiorders \leq_{f_i} for $i = 1, \ldots, k$, it is also a quasiorder, so k-primal spaces are Alexandroff. Since $N(x) = \uparrow x$ and $\overline{\{x\}} = \downarrow x$ in any Alexandroff space, it follows that $\overline{\{x\}}^{\mathcal{P}(f_1,\ldots,f_k)} = \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i)}$, and $N_{\mathcal{P}(f_1,\ldots,f_k)}(x) = \bigcap_{i=1}^k N_{\mathcal{P}(f_i)}(x)$ for any $x \in X$. In the lattice TOP(X) of topologies on a set X, recall that $\tau_1 \lor \tau_2$ has a basis

In the lattice TOP(X) of topologies on a set X, recall that $\tau_1 \vee \tau_2$ has a basis of sets of form $U_1 \cap U_2$ where $U_i \in \tau_i$ (i = 1, 2). For Alexandroff topologies, $\tau_1 \vee \tau_2$ has a basis of minimal neighborhoods $N_1(x) \cap N_2(x)$, where $N_i(x)$ is the minimal neighborhood of x in τ_i . It follows that $\mathcal{P}(f_1, \ldots, f_k) = \bigvee_{i=1}^k \mathcal{P}(f_i)$, where the supremum is taken in the lattice TOP(X). If κ is any non-zero cardinal number, Definition 2.1 could be generalized by declaring an Alexandroff topology τ on X to be κ -primal if $\tau = \bigvee_{i \in I} \mathcal{P}(f_i)$ where $|I| = \kappa$, and the supremum is taken in the lattice of Alexandroff topologies on X. We will not need this generality in this paper.

We have an immediate result.

Proposition 2.2. If X is infinite, then the indiscrete topology τ_I on X is not k-primal.

Proof: Suppose to the contrary X is infinite and $\tau_I = \mathcal{P}(f_1, \ldots, f_k)$. For any fixed $x \in X$, the intersection of the $\mathcal{P}(f_i)$ -closures of x is the τ_I -closure of x, which is X. Thus, for every $x \in X$ and every $i \in \{1, \ldots, k\}$, the $\mathcal{P}(f_i)$ closure of x is X. This shows that each topology $\mathcal{P}(f_i)$ is indiscrete. However, this contradicts the fact (22, Prop. 3) that the indiscrete topology on an infinite set is not primal.

Recall that a minimal point in a qoset (X, \leq) is an $x \in X$ satisfying the property: for each $y \in X$, if $y \leq x$ then $x \leq y$. A cyclic point in (X, \leq) is an element a such that there exists $b \neq a$ with $a \leq b$ and $b \leq a$. If a is a cyclic point, the associated cycle is the set $\{b \in X : a \leq b \text{ and } b \leq a\}$.

The motivation for k-primal spaces is that many Alexandroff spaces are not primal but are k-primal. The following example illustrates such a situation. Let $X = \{0, 1, 2\}$ equipped with the quasi-order \leq where $1 \leq 0$ and $2 \leq 0$, as seen in Figure 1.

Fig. 1. k-primal but not primal

Using the characterization of primal spaces in [9], [2], or [22], (X, \leq) is not primal, but $(X, \leq) = (X, \mathcal{P}(f_1, f_2))$ where $f_1(0) = 1, f_1(1) = f_1(2) = 2$ and $f_2(0) = 2, f_2(1) = f_2(2) = 1$. Thus, (X, \leq) is 2-primal. This example points out that Theorem 3 of [22] is incorrect: The supremum in TOP(X) of two primal spaces need not be primal. (The error in Theorem 3 of [22] does not impact the other results given there.)

Counting topologies (with certain properties) on finite sets is an old and challenging question [11]. The number of topologies on an *n*-element set is only known for $n \leq 18$. Table [1] lists the number of distinct *k*-primal topologies and the number of inequivalent (i.e. nonhomeomorphic) *k*-primal topologies on small sets. Figures 2–5 show the associated digraphs of the inequivalent *k*-primal topologies for sets with 2, 3, 4 and 5 elements. Recall that a directed edge $x \rightarrow y$ implies that $x \geq y$. So, the closure of a point *x* is the set of all vertices lying in a directed path starting from *x*. Table [1] and Figures 2–5 were produced by an exhaustive computer algorithm. (See http://people.wku.edu/tom.richmond/k-Primal_Spaces.nb for the programming code.)

~	Distinct	Inequivalent	Distinct k-primal	Inequivalent k-primal
\overline{n}	topologies	topologies	topologies	topologies
1	1	1	1	1
2	4	3	4	3
3	29	9	26	8
4	355	33	279	25
5	6942	139	4937	88
6	209527	718	141831	398
7	9535241	4535	6418715	2327

Table 1: Enumerating k-primal topologies

Fig. 2. 2-node nonhomeomorphic *k*-primal topologies

Fig. 3. 3-node nonhomeomorphic *k*-primal topologies

Fig. 4. 4-node nonhomeomorphic k-primal topologies

Recall that an element x in a primal space $(X, \mathcal{P}(f))$ is said to be a periodic point if $f^n(x) = x$ for some $n \in \mathbb{N}, n \neq 0$. The least $n \in \mathbb{N}$ such that $f^n(x) = x$ is called the period of x. Clearly, periodic points with period $\neq 1$ are cyclic points. Because of its importance, we recall the following lemma as well as its proof.

Lemma 2.3. [9] Lemma 2.1]. Let $f : X \to X$ be a function. Then $x \in X$ is a minimal point of (X, \leq_f) if and only if x is a periodic point of f.

Proof: Suppose that x is minimal in (X, \leq_f) . As $f(x) \leq_f x$, we get $x \leq_f f(x)$. Hence, x is periodic.

Fig. 5. 5-node nonhomeomorphic k-primal topologies

Conversely, if x is periodic and $y \leq_f x$, then there exists $n \in \mathbb{N}$ such that $y = f^n(x)$. But, as x is periodic, we may write $x = f^m(y)$ for some $m \in \mathbb{N}$, so $x \leq_f y$, showing that x is minimal. \Box

If $P = (X, \leq)$ is a partially ordered set, recall that \leq^* is called a linear extension of \leq if and only if \leq^* is a total order on X which contains \leq . Szpilrajn's theorem [28] guarantees that every partial order is contained in a linear order.

In order dimension theory, the (Dushnik–Miller) dimension of a partially ordered set P is the least natural number t for which there exists a family $\{\leq_1, \ldots, \leq_t\}$ of linear extensions of P whose intersection is the ordering of P.

Such linear extensions form a *realization* of P. We denote the dimension of P by $\dim(P)$.

One of the major results of dimension theory is Hiraguchi's Theorem 13, which gives the best upper bound on the dimension of a partially ordered set in terms of its cardinality. It states that the dimension of a partially ordered set $P = (X, \leq)$ is at most $\left| \frac{|X|}{2} \right|$, provided $|X| \geq 4$.

Since every partial order on a finite set is an intersection of a finite number of linear orders and every linear order is a quasiorder, we have the following result.

Proposition 2.4. Every finite partially ordered set P is a k-primal space for some positive natural number k.

Proof: Let $P = (X, \leq)$ be a finite partially ordered set and let $(X, \sqsubseteq) = \{x_n \sqsubseteq \cdots \sqsubseteq x_1\}$ be a linear extension of (X, \leq) . Then, we can define a map $f_{\sqsubseteq} \in X^X$ by $f_{\sqsubseteq}(x_i) = x_{i+1}$ and $f_{\sqsubseteq}(x_n) = x_n$.

For any realization $\{\sqsubseteq_1, \ldots, \sqsubseteq_k\}$ of P, we may form f_{\sqsubseteq_i} as above for each $i = 1, \ldots, k$, and this gives a family of primal spaces $\{(X, \mathcal{P}(f_{\sqsubseteq_i})) : i = 1, \ldots, k\}$ such that

$$(X, \leq) = \left(X, \bigvee_{i=1}^{k} \mathcal{P}(f_{\sqsubseteq i})\right) = (X, P(f_{\sqsubseteq i}, ..., f_{\sqsubseteq k})).$$

Therefore, (X, \leq) is a k-primal space.

Using Proposition 2.4 and the Dushnik–Miller dimension, we introduce the notion of primal dimension of a partially ordered set as follows.

 \square

Definition 2.5. The primal dimension of a finite partially ordered set $P = (X, \leq)$, denoted $\dim_{\mathcal{P}}(P)$, is the least natural number k such that P is k-primal.

The following result is immediate.

Proposition 2.6. For any finite partially ordered set P, we have $\dim_{\mathcal{P}}(P) \leq \dim(P)$.

Since $\dim_{\mathcal{P}}(P) \leq \dim(P)$ and $\dim(P)$ is at most $\lfloor \frac{|X|}{2} \rfloor$, we have $\dim_{\mathcal{P}}(P) \leq \lfloor \frac{|X|}{2} \rfloor$ for any $P = (X, \leq)$ with $|X| \geq 2$. The following examples show that the previous inequality may be strict.

Examples 2.7.

- The 2-dimensional partially ordered set (dim(P) = 2) illustrated in Figure
 is 1-primal (dim_P(P) = 1).
- 2. A nontrivial example showing that the inequality in Proposition 2.6 is strict is shown in Figure 7. The 3-dimensional partially ordered set (dim(P) = 3) illustrated is 2-primal but not primal (dim_P(P) = 2).

Fig. 6. A 2-dimensional partially ordered set which is 1-primal

Fig. 7. A 3-dimensional partially ordered set which is 2-primal

Remark 2.8. Hiraguchi's bound is the best possible (i.e. there exists a partially ordered set $P = (X, \leq)$ such that $\dim(P) = \lfloor \frac{|X|}{2} \rfloor$). For instance, consider the ordered set $St_n = \{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ ordered as follows:

 $\{a_1,\ldots,a_n\}$ and $\{b_1,\ldots,b_n\}$ are both antichains.

No b_i is a lower bound of an a_j .

 $a_i \leq b_j$ if and only if $i \neq j$.

It is known that $Dim(St_n) = n$ (for more information, see [3] Theorem 4.1]). The 5-dimensional ordered set St_5 is illustrated in Figure [3]

Fig. 8. The 5-dimensional ordered set St_5 ; $dim_{\mathcal{P}}(St_5) = dim(St_5)$

Using the example of Remark 2.8 we deduce the following proposition.

Proposition 2.9. Hiraguchi's bound is also the best possible bound for the primal dimension (i.e. there exists a partially ordered set $P = (X, \leq)$ such that $\dim_{\mathcal{P}}(P) = \left\lfloor \frac{|X|}{2} \right\rfloor$).

Proof: A similar argument can be used to show that the primal dimension $\dim_{\mathcal{P}}(St_n) = n$ (for $n \geq 3$). In fact, fix a family $I = \{f_1, \ldots, f_k\}$ of functions from St_n to itself such that $\bigcap_{i=1}^k \leq_{f_i} = \leq$.

from St_n to itself such that $\bigcap_{i=1}^k \leq_{f_i} = \leq$. For any fixed $i \in \{1, \ldots, n\}$, there exists $f_l \in I$ such that $a_i \not\leq_{f_l} b_i$. For $j \neq i$, then we have $a_i < b_j$ and $a_j < b_i$. For $k \neq i, j$, we have $a_i < b_k$ and $a_j < b_k$. Thus, $\{a_i, a_j\} \subseteq (\downarrow b_k) \subseteq \overline{\{b_k\}}^{\mathcal{P}(f_l)}$. Hence, a_i and a_j are comparable in (X, \leq_{f_l}) . If $a_i <_{f_l} a_j$, then $a_i <_{f_l} b_i$ which is absurd. Then, $a_j <_{f_l} a_i$ and consequently $a_j <_{f_l} b_j$. So we have obtained that every $\leq_{f_l} (f_l \in I)$ contains at most one pair (a_i, b_i) such that $a_i \not\leq_{f_l} b_i$. Thus there exists an injective mapping $\varphi : \{1, \ldots, n\} \to I$ which assigns to every i a map $f_l \in I$ such that $a_i \not\leq_{f_l} b_i$. Therefore $n \leq |I|$ follows.

Hence, the Hiraguchi's bound is also the best possible bound for the primal dimension. $\hfill \Box$

3. A characterization of k-primal spaces

Recall that a qoset (X, \leq) is connected if and only if for any $a, b \in X$, there exists a finite sequence $(a = x_1, x_2, \dots, x_{n-1}, x_n = b)$ such that x_i and x_{i+1} are comparable for every $1 \leq i \leq n-1$. Hence, it is clear that every qoset (X, \leq) can be written as a disjoint union of connected qosets. Now, suppose that $X = \bigcup_{i=1}^{k} C_k$ is the decomposition of X into k disjoint connected qosets. Then, the induced quasi-order by \leq on every C_i will be denoted by \leq_{C_i} . One can see easily that for every $x \in X$, the downset of x in (X, \leq) is exactly the downset of x in (C_j, \leq_{C_j}) , where C_j is the unique connected qoset of X containing x. In this case, we write $(\downarrow x) = (\downarrow_{C_j} x)$. Finally, by a *strict qoset* we mean any qoset (X, \leq) which is not a partially ordered set.

Now, we are in a position to give the main result of this paper. We show that a finite qoset (X, \leq) is k-primal for some k if and only if whenever a cyclic point a is a lower bound of y, it is below every other lower bound of y.

Theorem 3.1. Let (X, \leq) be a finite qoset. Then, (X, \leq) is a k-primal space for some $k \in \mathbb{N}, k \neq 0$ if and only if for every cyclic point a and every $x, y \in X$ we have

$$\left\{ \begin{array}{cc} a \leq y \\ x \leq y \end{array} \right. \implies a \leq x$$

Proof: The proof will be divided into many steps.

Step 1: First, we remark that the condition in Theorem 3.1 implies that every cyclic point is minimal. Indeed, let a be a cyclic point. Consider $x \in X$ with $x \leq a$. Since $a \leq a$ and $x \leq a$, then by hypothesis $a \leq x$. Therefore, a is a minimal point.

Step 2: Let (X, \leq) be a finite strict qoset which is connected and satisfies the condition in Theorem 3.1 Let us show that (X, \leq) has a unique cycle and every minimal point is a cyclic point.

Indeed, by the hypothesis, \leq is a strict quasiorder, so there exists a cyclic point $a \in X$ (a is also a minimal point by Step 1). Let b be a minimal point in X. We must show that $b \in (\downarrow a)$.

Since (X, \leq) is connected, there exists a finite sequence $(a = v_1, \ldots, v_p = b)$ with $\{v_1, v_2, \ldots, v_p\} \subseteq X$, such that v_i and v_{i+1} are always comparable. If there exists a point v_j such that $v_j \not\geq a$, then take v_{i_0} $(i_0 > 1)$ to be a first such point. Hence, $v_{i_0-1} \geq a$ and the two points v_{i_0-1} and v_{i_0} are comparable. So, we have two cases:

- (1) $v_{i_0-1} \leq v_{i_0} \Rightarrow a \leq v_{i_0}$.
- (2) $v_{i_0} \leq v_{i_0-1} \Rightarrow a \leq v_{i_0}$ (by our condition, since $a \leq v_{i_0-1}$).

In both cases, $a \leq v_{i_0}$. Finally, $a \leq b$ and by the minimality of $b, b \leq a$. So b is in the same cycle with a.

Step 3: Let (X, \leq) be a finite connected strict qoset which satisfies the condition of Theorem 3.1 Then, (X, \leq) is k-primal. Indeed, let $(\downarrow v_1) = \{v_1, \ldots, v_p\}$ be the unique cycle in (X, \leq) . Define the subset $X^* = (X - (\downarrow v_1)) \cup \{v_1\}$ endowed with the induced quasi-order \leq_{X^*} . Then, (X^*, \leq_{X^*}) is a partial ordered set (note that v_1 is the least element in X^*). So, by Proposition 2.4 (X^*, \leq_{X^*}) is k-primal. Hence, there exist $f_1^*, \ldots, f_k^* \in X^{*X^*}$ such that

$$\leq_{X^*} = \leq_{f_1^*, \dots, f_k^*}$$
.

For any $x \in X^*$, if we denote by $(\downarrow_{X^*} x)$ the downset of x in X^* , we can write:

$$(\downarrow x) = (\downarrow_{x^*} x) \cup (\downarrow v_1) = \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i^*)} \cup (\downarrow v_1).$$

For each function f_i^* we define the function $f_i \in X^X$ by:

$$\begin{cases} f_i(x) = f_i^*(x) , \forall x \in X^* - \{v_1\} \\ f_i(v_j) = v_{j+1} \text{ if } 1 \le j \le p-1 \text{ and } f_i(v_p) = v_1 \end{cases}$$

So, it is clear that $\forall x \in X^*$, $\overline{\{x\}}^{\mathcal{P}(f_i^*)} \subseteq \overline{\{x\}}^{\mathcal{P}(f_i)}$. Since $\forall x \in X^*$, $v_1 \in \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i^*)}$, then for each f_i and for each $x \in X^*$, $v_1 \in \overline{\{x\}}^{\mathcal{P}(f_i)}$ and consequently

$$\forall x \in X^*, \ \overline{\{x\}}^{\mathcal{P}(f_i)} = \overline{\{x\}}^{\mathcal{P}(f_i^*)} \cup (\downarrow v_1),$$

and if $x \in (\downarrow v_1)$, then by the construction $\overline{\{x\}}^{\mathcal{P}(f_i)} = \{v_1, \ldots, v_p\} = (\downarrow v_1) = (\downarrow x).$

In summary, we get

$$\forall x \in X^*, \quad \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i)} = \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i^*)} \cup (\downarrow v_1) = (\downarrow x).$$
$$\forall x \in (\downarrow v_1), \quad \bigcap_{i=1}^k \overline{\{x\}}^{\mathcal{P}(f_i)} = \bigcap_{i=1}^k (\downarrow x) = (\downarrow x).$$

Hence, $\leq = \leq_{f_1, \dots, f_k}$ and (X, \leq) is k-primal.

Step 4: The proof of the main theorem. Let (\overline{X}, \leq) be a k-primal space.

Suppose $a, x, y \in X$, a is a cyclic point, and $a \leq y$, $x \leq y$. We have

$$(\downarrow a) \cup \{x\} \subset (\downarrow y)$$
$$\implies (\downarrow a) \cup \{x\} \subset \overline{\{y\}}^{\mathcal{P}(f_i)}, \ \forall i = 1, \dots, k$$

But $(\overline{\{y\}}^{\mathcal{P}(f_i)}, \leq_{f_i})$ is totally quasi-ordered (because (X, \leq_{f_i}) is a primal space). So, a and x are comparable in (X, \leq_{f_i}) and thus by Lemma 2.3, $\forall i = 1, \ldots, k, a \leq_{f_i} x$. Finally, $a \leq x$.

Conversely, let $\{C_1, \ldots, C_p\}$ be the family of connected components of (X, \leq) each endowed with the quasi-order induced by that of X.

Since each connected quasi-ordered set (C_i, \leq_{C_i}) fulfills our condition, then by Proposition 2.4 and Step 3 each (C_i, \leq_{C_i}) is k_i -primal. That is, $\forall i = 1, \ldots, p$, there exist k_i functions $f_{i,1}, \ldots, f_{i,k_i}$ from C_i to C_i such that

$$\leq_{C_i} = \leq_{f_{i,1},\cdots,f_{i,k_i}} .$$

Let $k = \max\{k_i : i = 1, ..., p\}$. For each i = 1, ..., p and $k_i < j \le k$ define the functions $f_{i,j} = f_{i,1}$.

We define the functions $g_t \in X^X$ (t = 1, ..., k) by

$$g_t(x) = f_{i,t}(x) \text{ if } x \in C_i.$$

Thus, g_t restricted to component C_i is the map $f_{i,t}$.

Now, let $x \in X$. Since x belongs to a unique C_n , we have

$$(\downarrow x) = (\downarrow_{C_n} x) = \bigcap_{j=1}^{k_n} \overline{\{x\}}^{\mathcal{P}(f_{n,j})} = \bigcap_{j=1}^k \overline{\{x\}}^{\mathcal{P}(f_{n,j})} = \bigcap_{j=1}^k \overline{\{x\}}^{\mathcal{P}(g_j)}.$$

In conclusion, (X, \leq) is a k-primal space for $k = \max\{k_i : i = 1, \dots, p\}$. \Box

The general form of a k-primal space is suggested in Figure 13 and the first paragraph of the proof of Theorem 4.3

Fig. 9. A qoset which is not k-primal

Examples 3.2. 1. Let $X = \{x, y, a, b\}$ equipped with the quasiorder defined as in Figure 9.

Suppose that (X, \leq) is k-primal for some integer k. Hence, \leq is generated by the k functions $f_i : i = 1, ..., k$. Since $(\downarrow a) = (\downarrow b) = \{a, b\}$, then for any function f_i we have $\overline{\{a\}}^{\mathcal{P}(f_i)} = \overline{\{b\}}^{\mathcal{P}(f_i)}$ and thus a, b are cyclic points in (X, \leq_{f_i}) , which implies by Lemma 2.3 that a and b are minimal points in (X, \leq_{f_i}) .

Now, since $(\downarrow y) = X$, then $\overline{\{y\}}^{\mathcal{P}(f_i)} = X$ for each i = 1, ..., k. Hence (X, \leq_{f_i}) is a totally quasi-ordered set containing the minimal points a and b, so $\{a, b\} \subseteq \overline{\{x\}}^{\mathcal{P}(f_i)}$ for each i = 1, ..., k. Therefore $\{a, b\} \subseteq \overline{\{x\}}^{\tau \leq}$. This is a contradiction because $\overline{\{x\}}^{\tau \leq} = \{x\}$. In this example, we have a is a cyclic point, $a \leq y$ and $x \leq y$ but x and a

In this example, we have a is a cyclic point, $a \leq y$ and $x \leq y$ but x and a are not comparable.

2. An infinite qoset (X, \leq) satisfying the condition of the main result need not be k-primal for any integer k.

For this, take the partially ordered set (\mathbb{N}, \vdash) where the partial order \vdash is defined by : $\forall n \neq 0, n \vdash 0$ and the numbers $1, 2, \ldots$ are pairwise incomparable, as shown in Figure 10.

Fig. 10. An infinite partially ordered set which is not k-primal

Then, $(\downarrow 0) = \mathbb{N}$ and for each $a \neq 0$, $(\downarrow a) = \{a\}$. Suppose (\mathbb{N}, \vdash) is k-primal, with \vdash generated by the k functions $f_i, (i = 1, ..., k)$. Then, $(\downarrow 0) = \bigcap_{i=1}^k \overline{\{0\}}^{\mathcal{P}(f_i)} = \mathbb{N}$. So, for any function f_i we have $\overline{\{0\}}^{\mathcal{P}(f_i)} = \mathbb{N}$ and consequently,

$$\forall i = 1, \dots, k, \ \forall n \in \mathbb{N}^* = \mathbb{N} - \{0\}, \ \exists! \ \alpha_{i,n} \in \mathbb{N}^* : n = f_i^{\alpha_{i,n}}(0).$$

Now, for each f_i we have

$$\overline{\{1\}}^{\mathcal{P}(f_i)} = \{1, f_i(1), \dots, f_i^n(1), \dots\} \\ = \left\{ f_i^{\alpha_{i,1}}(0), f_i^{\alpha_{i,1}+1}(0), \dots, f_i^{\alpha_{i,1}+n}(0), \dots \right\} \\ \text{(for some unique } \alpha_{i,1} \in \mathbb{N}^*) \\ = \mathbb{N} - \left\{ 0, f_i(0), \dots, f_i^{\alpha_{i,1}-1}(0) \right\}.$$

Hence,

 $\overline{\{1\}}^{\tau \leq} = \bigcap_{i=1}^{k} \overline{\{1\}}^{\mathcal{P}(f_i)}$ is an infinite set, which is impossible. While the partially ordered set (\mathbb{N}, \vdash) has no primal dimension, we note that it is 2-dimensional: for the two linear extensions \leq_1 and \leq_2 of \vdash given by

$$\begin{aligned} n+1 &\leq_1 n \quad \forall n \in \mathbb{N} \\ n &\leq_2 n+1 \quad \forall n \in \mathbb{N}^* \quad and \ n &\leq_2 0 \quad \forall n \in \mathbb{N}, \end{aligned}$$

the family $\{\leq_1, \leq_2\}$ is a realization of (\mathbb{N}, \vdash) .

4. Complementation in the lattice KPTOP(X)

The study of complementation in the lattice TOP(X) of all topologies on a set X was advanced by A. Steiner [27] and variations on this theme have been studied extensively since. (See [6] [7] [17] [22] [23] [25] [26].) Recall that τ and τ^* are complements if $\tau \vee \tau^*$ is the discrete topology and $\tau \wedge \tau^*$ is the indiscrete topology. For a positive integer k, let k-PTOP(X) be the collection of k-primal topologies on X. Let $KPTOP(X) = \bigcup_{k=1}^{\infty} k$ -PTOP(X) = { $\tau \in TOP(X) : \tau$ is k-primal for some $k \in \mathbb{N}$ }, ordered by \subseteq . Recall that $\tau \in KPTOP(X)$ if and only if there exists a natural number k and primal topologies $\mathcal{P}(f_i)$ $(i = 1, \ldots, k)$ with $\tau = \bigvee_{i=1}^{k} \mathcal{P}(f_i)$, where the supremum is taken in TOP(X). It follows that KPTOP(X) is closed under finite suprema. Since the indiscrete topology on $X = \{x_0, \ldots, x_{n-1}\}$ is $\mathcal{P}(f)$ where $f(x_i) = x_{(i+1 \mod n)}$, it is the smallest element of KPTOP(X). Thus, if X if finite, KPTOP(X) is a (complete) lattice. Any lattice which contains the primal topologies must contain finite suprema of primal topologies. We record this as a theorem.

Theorem 4.1. If X is finite, KPTOP(X) is a lattice, and is the smallest lattice in TOP(X) which contains all the primal spaces.

We note that if $X = \{\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots\}$ is countably infinite, KPTOP(X) is not a lattice. With $f(a_i) = a_{i+1}$ and $g(a_i) = a_{i-1}$, we find that the only lower bound of $\mathcal{P}(f)$ and $\mathcal{P}(g)$ in TOP(X) is the indiscrete topology, so the only candidate for $\mathcal{P}(f) \wedge \mathcal{P}(g)$ in KPTOP(X) is the indiscrete topology. However, by Proposition 2.2, the indiscrete topology X is not k-primal, so KPTOP(X) is not a lattice.

Theorem 4.2. The following are equivalent.

- (a) KPTOP(X) is a sublattice of TOP(X).
- (b) KPTOP(X) is a distributive lattice.
- (c) $|X| \le 2$.

Proof: If $|X| \leq 2$, then KPTOP(X) = TOP(X), so (c) implies (a) and (b). Suppose $X = \{1, 2, ..., n\}$ for $n \geq 3$. The example used in Theorem 3(c) of [22] shows (a) implies (c). Specifically, consider the topologies τ_1 and τ_2 on X whose specialization quasiorders are \leq_1 on X defined by $i \leq_1 i$ for all $i \in X$ and $3 \leq_1 2 \leq_1 1$, and \leq_2 on X defined by $i \leq_2 i$ for all $i \in X$ and $3 \leq_2 1 \leq_2 2$. Figure 11 shows τ_1, τ_2 , and $\tau_1 \wedge \tau_2$, where the inf is taken in TOP(X). By Theorem 3.1, this inf is not in KPTOP(X), so KPTOP(X) is not a sublattice of TOP(X). In TOP(X), $\tau_1 \wedge \tau_2$ has basis of minimal neighborhoods $\{\{1, 2\}, \{1, 2, 3\}\} \cup \{\{i\} : i \in X - \{1, 2, 3\}\}$. In KPTOP(X), $\tau_1 \wedge \tau_2$ has basis $\{\{1, 2, 3\}\} \cup \{\{i\} : i \in X - \{1, 2, 3\}\}$.

Fig. 11. $\tau_1 \wedge \tau_2$ is not in KPTOP(X)

To see (b) implies (c), suppose $X = \{1, 2, 3\} \cup X'$. Consider the topologies τ_i having specialization quasiorders \leq_i as shown in Figure 12 Now $\tau_1 \wedge \tau_2$ is

Fig. 12. $\tau_1 \wedge [\tau_2 \vee \tau_3] \neq [\tau_1 \wedge \tau_2] \vee [\tau_1 \wedge \tau_3]$

also shown in Figure 12. It is easy to see that $\tau_1 \wedge \tau_3 = \tau_3$, and then $[\tau_1 \wedge \tau_2] \vee [\tau_1 \wedge \tau_3] = \tau_3$. However, since $\tau_2 \vee \tau_3$ is the discrete topology, $\tau_1 \wedge [\tau_2 \vee \tau_3] = \tau_1 \neq [\tau_1 \wedge \tau_2] \vee [\tau_1 \wedge \tau_3]$. Thus, KPTOP(X) is not distributive. (It is also easy to check that $\tau_3 \vee [\tau_1 \wedge \tau_2] = \tau_3 \neq \tau_1 = [\tau_3 \vee \tau_1] \wedge [\tau_3 \wedge \tau_2]$.)

By Theorem 3.1 if a finite connected Alexandroff topological space (X, τ) is k-primal, then the associated specialization quasi-order \leq on X is either a partially ordered set (if it has no cyclic points), or it is obtained from a partially ordered set with minimum element by splitting the minimum element into several elements in a cycle. That is, if (X, \leq) is given the equivalence

relation $a \approx b$ if and only if $a \leq b$ and $b \leq a$, then there is one equivalence class [x] which is not a singleton, and it is minimum in the resulting partial order on the \approx -equivalence classes defined by $[a] \leq [b]$ if and only if $a \leq b$. This quotient space of \approx -equivalence classes, with the specialization topology consisting of the \leq -increasing sets, is the T_0 -reflection of (X, τ) . See [4] [16] for further information on this theme. It is well-known that an Alexandroff space (X, τ) is connected (as a topological space) if and only if the associated quasiorder (X, \leq) is connected (as a graph). If $X = (X, \leq)$ is a quasiordered set, by X^{op} we mean the quasiordered set (X, \geq) .

Theorem 4.3. If X is finite, KPTOP(X) is a complemented lattice. That is, if τ is a k-primal topology on a finite set X then τ has a complement which is *j*-primal for some $j \in \mathbb{N}$.

Proof: Suppose τ is k-primal with connected components $P_1 \cup C_1, \ldots, P_n \cup C_n, P_{n+1}, \ldots, P_m, L_1, \ldots, L_t, I_1, \ldots, I_j$, where each C_i is a cycle (with more than one point) appearing below the partially ordered set P_i $(1 \le i \le n)$, each P_i $(n+1 \le i \le m)$ is a partially ordered set with more than one element, each L_i is a cycle with more than one element, and $|I_i| = 1$ $(1 \le i \le j)$, as suggested in Figure 13

Fig. 13. The quasiorder for an arbitrary k-primal space (X, τ)

For $1 \leq i \leq n$, let $M_i = C_i$, and for $n+1 \leq i \leq m$ let M_i be the set of minimal points in P_i . (Thus, in all cases, M_i is the set of minimal points in its component.) Let $M = \bigcup_{i=1}^m M_i$, $L = \bigcup_{i=1}^t L_i$, and $I = \bigcup_{i=1}^j I_i$.

<u>Case 1:</u> $M = \emptyset$. Then there are no components of form $P_i \cup C_i$ or P_j , so $X = L \cup I$. For each $i = 1, \ldots, t$, pick $l_i \in L_i$ and let $U = I \cup \{l_i\}_{i=1}^t$. With $\tau^* = \{U\} \cup \{\{x\} : x \in X - U\}$, it is easy to see that τ^* is a complement of τ . Furthermore, since τ^* has one cycle and several isolated points, it is 1-primal.

<u>Case 2</u>: $M \neq \emptyset$. Let (X, τ^*) be the Alexandroff space whose specialization quasiorder \leq^* is the partially ordered set depicted in Figure 14. We describe the order \leq^* on L. Each L_i has at least two elements $l_{i,1}$ and $l_{i,2}$. We form chains $l_{1,1} <^* l_{2,1} <^* \cdots <^* l_{t,1}$ and $l_{t,2} <^* \cdots <^* l_{2,2} <^* l_{1,2}$, with elements of each chain unrelated to elements of the other, and with every element of L not in one of these chains related only to itself. Recall that the smallest τ^* -neighborhood $N^*(x)$ of x is $\uparrow_* x$, and U is τ^* -open if and only if $U = \uparrow_* U = \{y \in X : \exists u \in$ $U, u \leq^* y\}$. In (X, τ) , $N(x) = \uparrow x$, or for emphasis, $\uparrow_X x$. First we show that $N(x) \cap N^*(x) = \{x\}$ for all $x \in X$ by considering cases based on where x lies.

$l_{t,1}$	$l_{1,2}$	
Í		other points of L
:	$l_{2,2}$	1
$l_{2,1}$:	
		Г
$l_{1,1}$	$l_{t,2}$	
	$egin{array}{c c} l_{t,1} & & & & & & & & & & $	$\begin{array}{c cccc} l_{t,1} & l_{1,2} \\ & \\ \vdots & l_{2,2} \\ & \\ l_{2,1} & \vdots \\ & \\ l_{1,1} & l_{t,2} \end{array}$

Fig. 14. The quasiorder for the complement (X, τ^*)

If $x \in I$, $N(x) = \{x\}$. If $x \in M$, $N^*(x) = \{x\}$. In each of these cases, $N(x) \cap N^*(x) = \{x\}$. If $x \in L_i$, then $N(x) \cap N^*(x) = L_i \cap N^*(x) = \{x\}$. If $x \in P_i - M_i$,

$$N^*(x) = \uparrow_* x = M \cup I \cup L \cup \bigcup_{j=1}^{i-1} P_j \cup \downarrow_{P_i} x = M \cup I \cup L \cup \bigcup_{j=1}^{i-1} P_j \cup \downarrow_X x.$$

Since $N(x) = \uparrow_X x = \uparrow_{P_i} x \subseteq P_i$, we have $N(x) \cap N^*(x) = \uparrow_X x \cap \downarrow_X x = \{x\}$. Thus, $\tau \lor \tau^*$ is the discrete topology.

Next, we show that $\tau \cap \tau^* = \{\emptyset, X\}$. Suppose $U \in \tau \cap \tau^*$ and $x \in U$. Again, we consider cases based on where x lies. Now U is \leq -increasing and \leq^* increasing, so we may show U = X by showing that starting from x and iteratively taking \uparrow and \uparrow_* , we get every point of X.

If $x \in I$, $M \subseteq \uparrow_* x \subseteq U$, so $\uparrow M \subseteq U$. But since $M \neq \emptyset$, $\uparrow M$ contains $P_i - M_i$ for all i = 1, ..., m. Now $\uparrow_* (P_m - M_m) = X$. Thus, U = X.

If $x \in M_i$ for some *i*, then $N(x) = \uparrow x \subseteq U$ and $\uparrow x$ contains a point $x' \in P_i - M_i$. Now $\uparrow_* x'$ contains $M \cup I \cup L$, so *U* contains $M \cup I \cup L$. Now $U = \uparrow U$ must contain $\uparrow (M \cup I \cup L) = X$. Thus, U = X.

If $x \in (P_i - M_i)$ for some *i*, then $M \cup I \cup L \subseteq \uparrow_* x \subseteq U$, and $\uparrow (M \cup I \cup L) \subseteq \uparrow U = U$, so U = X.

If $x \in L_i$ for some *i*, then $L_i = N(x) = \uparrow x \subseteq U$. Considering the order \leq^* on *L* (as shown in the box in Figure 14), $N^*(x) = \uparrow_* x$ contains one point $a_k \in \{l_{k,1}, l_{k,2}\}$ from each L_k $(1 \leq k \leq j)$, so *U* must contain $N(a_k) = L_k$

for each k. This shows $L \subseteq U$. Thus, $\uparrow_* L = (M \cup I \cup L) \subseteq U$, and thus $X = \uparrow (M \cup I \cup L) \subseteq U$. Thus, U = X.

In all cases, $\tau \cap \tau^* = \{\emptyset, X\}$, so τ^* is a complement of τ .

Finally, since the quasiorder for τ^* is in fact a partial order, Proposition 2.4 or Theorem 3.1 show that $\tau^* \in KPTOP(X)$.

Since the quasiorder for τ^* described in Figure 14 is a partial order, this construction produces a T_0 complement for X. In particular, together with Proposition 2.4 this shows that every T_0 topology on a finite set has a T_0 complement.

Also, it is easy to see that if X is connected and is a partially ordered set P_1 or a partially ordered set above a cycle $P_1 \cup C_1$, then this algorithm produces a complement which is also connected.

Note that the result of Theorem 4.3 fails if X is infinite: the discrete topology $\mathcal{P}(id)$ is 1-primal, but its only complement is the indiscrete topology, which is not k-primal for any k.

References

- [1] P. Alexandroff, Diskrete Räume. Mat. Sb. **2**(44) (1937) 501–519.
- [2] F. Ayatollah Zadeh Shirazi and N. Golestani, Functional Alexandroff spaces. Hacettepe Journal of Mathematics and Statistics 40(4) (2011) 515– 522.
- [3] F. Ayatollah Zadeh Shirazi and N. Golestani, More about functional Alexandroff topological spaces. Scientia Magna 6(4) (2010) 64–69.
- [4] K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha,\beta)}$ spaces and the Wallman compactification, Internat. J. Math. Math. Sci. no. 65–68 (2004) 3717–3735.
- [5] I. Dahane, S. Lazaar, T. Richmond, and T. Turki, On resolvable primal spaces, Quaestiones Mathematicae 42(1) (2019)15–35.
- [6] E. P. de Jager and H.-P. A. Künzi, Atoms, anti-atoms and complements in the lattice of quasi-uniformities. Topology Appl. 153(16)(2006), 3140–3156.
- [7] E. P. de Jager and H.-P. A. Künzi, Infima and complements in the lattice of quasi-uniformities. Topology Appl. 154(10) (2007) 2117–2126.
- [8] B. Dushnik and E. W. Miller, Partially ordered sets, American Journal of Mathematics, 63(3) (1941) 600–610.
- [9] O. Echi, The category of flows of set and top. Topology and its Applications 159(9) (2012) 2357–2366.
- [10] O. Echi and T. Turki, Spectral primal spaces, J. Alg. and its Apps. 18(2) (2019) 10pp. 1950030

- [11] M. Erné and K. Stege, Counting finite posets and topologies, Order 8(3) (1991) 247–265.
- [12] A. Haouati and S. Lazaar, Primal spaces and quasihomeomorphisms. Appl. Gen. Topol. 16(2) (2015) 109–118.
- [13] T. Hiraguchi, On the dimension of orders, The Seience Reports of the Kanazawa University 4(1) (1955) 1–20.
- [14] E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and its Applications 36(1) (1990) 1–17.
- [15] T. Y. Kong, R. Kopperman, and P. R. Meyer, A topological approach to digital topology, American Mathematical Monthly 98(12) (1991) 901–912.
- [16] H.-P. Künzi and T. A. Richmond, T_i-ordered reflections, Applied General Topology 6(2) (2005) 207-216.
- [17] H.-P. Künzi and A. Losonczi, Semilattices of totally bounded quasiuniformities. Topology Appl. 114(3) (2001) 273–284.
- [18] S. Lazaar and H. Sabri, The topological group of autohomeomorphisms of homogeneous functionally Alexandroff spaces, Topology Proceedings 55 (2020) 243–264.
- [19] S. Lazaar, T. Richmond, and H. Sabri, Homogeneous functionally Alexandroff spaces. Bulletin of the Australian Mathematical Society, 97(2) (2018) 331–339.
- [20] S. Lazaar, T. Richmond, and H. Sabri, The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Communications in Algebra, 47(9) (2019) 3818–3289.
- [21] S. Lazaar, T. Richmond, and T. Turki, Maps generating the same primal space. Quaestiones Mathematicae 40(1) (2017)17–28.
- [22] J. Menix and T. Richmond, The lattice of functional Alexandroff topologies, Order (2020) https://doi.org/10.1007/s11083-020-09523-6
- [23] A. Mhemdi and T. Richmond, Complements of convex topologies on products of finite totally ordered spaces. Positivity 21(4) (2017) 1369–1382.
- [24] T. Richmond, Quasiorders, principal topologies, and partially ordered partitions. Internat. J. Math. & Math. Sci. 21(2) (1998) 221–234.
- [25] T. Richmond, General Topology: An Introduction, De Gruyter, 2020.
- [26] T. Richmond, Complements in the lattice of locally convex topologies. Order 30(2) (2013) 487–496.

- [27] A. K. Steiner, The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122 (1966) 379–398.
- [28] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fundamenta Mathematica
e16(1)~(1930)386–389.