Topology and its Applications Preprint
https://doi.org/10.1016/j.topol.2021.107907.

k-Primal Spaces

Ahlem Ben Amor?®, Sami Lazaar®, Tom Richmond®*, Houssem Sabri?

®Gafsa University, Preparatory Institute for Engineering Studies of Gafsa.
benamor_ahlem@yahoo.com
b Taibah University, Faculty of Sciences Madina. salazaar72@yahoo.fr
¢ Western Kentucky University, Bowling Green, KY 42101 USA. tom.richmond@wku.edu
dFaculty of Sciences of Tunis, Department of Mathematics, 2092 Campus Universitaire El
Manar. sabri.houssem@gmail.com

Abstract
A function f : X — X determines a topology P(f) = {U C X : f~}(U) C

U}. A topological space (X,7) is primal (or functional Alexandroff) if 7 =
P(f) for some function f, and is k-primal if 7 is the supremum of a set of k
primal topologies on X. Using the associated specialization quasiorder, we give
necessary and sufficient conditions for a finite topological space to be k-primal.
We show that the k-primal topologies on a finite set X form a lattice and discuss

lattice complements.
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1. Introduction

In 1937, Alexandroff [I] studied topologies whose closed sets also form a
topology, or equivalently, topologies in which arbitrary intersections of open
sets are open. Such topologies are now called Alexandroff topologies. Since
every topology on a finite set is obviously an Alexandroff topology, Alexandroff
spaces are widely used in computer sciences.

The most fundamental property of Alexandroff spaces is that the category
Alx of Alexandroff spaces with continuous maps is isomorphic to the category
Qos of qosets (that is, quasiordered sets) with order-preserving maps. Any
Alexandroff topology 7 on X gives a quasiorder <, on X by taking

x <, y if and only if x is in the 7-closure @T of y,

and by the same correspondence every quasiorder < on X gives an Alexandroff
topology 7< on X. The 7-closed sets are the <-decreasing sets, and in particular,
{z} =]z ={y € X : y < z}. Every point = in an Alexandroff topology has a
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smallest neighborhood N(z) =1z = {y € X : z < y}. Given an Alexandroff
space X, we will interchangeably identify it by its topology or its associated
“specialization” quasiorder. The specialization quasiorder <, is a partial order
if and only if 7 is Ty. For further details and applications, see [1][14}[15] [24][25].

Any function f : X — X determines a topology P(f) on X by taking the
open sets to be those sets U C X with f~1(U) C U, or equivalently, by taking
the closed sets to be those sets C with f(C) C C. Thus, the P(f) closed subsets
of X are those sets invariant under f. A topological space (X,7) is primal if
7 = P(f) for some function f : X — X. Primal spaces were introduced
independently by Ayatollah Zadeh Shirazi and Golestani [2| in 2011 and by
Echi [9] in 2012. In [2], primal spaces are called functional Alexandroff space.
Properties of these spaces have been extensively studied in the ten years since
their introduction [3][51[10}[12][18][19)[20}[21][22]. In a primal space (X, P(f)),
the specialization quasiorder is denoted <¢, and the closure of a point x is the
orbit {f™(z) : n € N}, where N={0,1,2,...}.

Here, we study k-primal topologies, which are the supremum of k& primal
topologies. In Section 2, we recall the Dushnik—Miller dimension, introduce the
primal dimension of a finite partially ordered set and show some connections
between them. Section 3 shows that a topology with finite specialization qoset
(X, <) is k-primal for some integer k if and only if for any cyclic point a and
any z,y € X such that a <y and x < y, we have a < x. Section 4 shows that
the topologies on a finite set which are k-primal for some positive integer k form
a complemented lattice.

2. Counting and dimension
In this paper, we consider k-primal spaces, defined below.

Definition 2.1. For any positive integer k and any family {f; : 1 < i < k}
of functions from a set X to itself, let <;, be the specialization quasiorder for
(X,P(f:)). We define the k-primal topology P(f1,...,fr) to be the topology
having specialization quasiorder <g,  r=({<r:1<i<k}. Thus, x <p. . 1
y if and only if v <5, y for each i =1,..., k. A k-primal space is a set X with
a k-primal topology.

Clearly, if £ = 1 we have the notion of primal spaces, and for any natural
number k # 0, a k-primal space is (k + 1)-primal.
Since <y, .. . is the intersection of the quasiorders <y, for i = 1,...

) k?
it is also a quasiorder, so k-primal spaces are Alexandroff. Since N(x) =1
Sk

z and {z} =] z in any Alexandroff space, it follows that @P(ﬁ"” ) _

ﬂle {a:}P(f’), and Nps,,.. () = ﬂle Np(s,y(x) for any z € X.

In the lattice TOP(X) of topologies on a set X, recall that 71 V72 has a basis
of sets of form U; N Uy where U; € 7; (i = 1,2). For Alexandroff topologies,
71 V 72 has a basis of minimal neighborhoods N (z) N Na(x), where N;(z) is the
minimal neighborhood of = in 7;. It follows that P(f1,..., fx) = \/f:1 P(fi),
where the supremum is taken in the lattice TOP(X).



If x is any non-zero cardinal number, Definition could be generalized
by declaring an Alexandroff topology 7 on X to be s-primal if 7 = \/,; P(f:)
where |I| = k, and the supremum is taken in the lattice of Alexandroff topologies
on X. We will not need this generality in this paper.

We have an immediate result.

Proposition 2.2. If X is infinite, then the indiscrete topology 71 on X is not
k-primal.

Proof: Suppose to the contrary X is infinite and 77 = P(f1,..., fx). For any
fixed € X, the intersection of the P(f;)-closures of x is the 7;-closure of z,
which is X. Thus, for every € X and every i € {1,...,k}, the P(f;) closure
of z is X. This shows that each topology P(f;) is indiscrete. However, this
contradicts the fact ([22], Prop. 3) that the indiscrete topology on an infinite
set is not primal. O

Recall that a minimal point in a qoset (X, <) is an x € X satisfying the
property: for each y € X, if y < x then « < y. A cyclic point in (X, <) is an
element a such that there exists b # a with a < b and b < a. If a is a cyclic
point, the associated cycle is the set {b € X : a < b and b < a}.

The motivation for k-primal spaces is that many Alexandroff spaces are not
primal but are k-primal. The following example illustrates such a situation. Let
X ={0,1,2} equipped with the quasi-order < where 1 < 0 and 2 < 0, as seen
in Figure

0

N\

Fig. 1. k-primal but not primal

Using the characterization of primal spaces in [9], [2], or [22], (X, <) is not
primal, but (X, <) = (X,P(f1, f2)) where f1(0) = 1, f1(1) = f1(2) = 2 and
f2(0) =2, f2(1) = f2(2) = 1. Thus, (X, <) is 2-primal. This example points out
that Theorem 3 of [22] is incorrect: The supremum in TOP(X) of two primal
spaces need not be primal. (The error in Theorem 3 of [22] does not impact the
other results given there.)

Counting topologies (with certain properties) on finite sets is an old and
challenging question [11]. The number of topologies on an n-element set is only
known for n < 18. Table |1flists the number of distinct k-primal topologies
and the number of inequivalent (i.e. nonhomeomorphic) k-primal topologies on
small sets. Figures 2-5 show the associated digraphs of the inequivalent k-primal
topologies for sets with 2, 3,4 and 5 elements. Recall that a directed edge x — ¥y
implies that « > y. So, the closure of a point x is the set of all vertices lying in
a directed path starting from x. Table and Figures 2-5 were produced by an
exhaustive computer algorithm. (See http://people.wku.edu/tom.richmond/k-
Primal_Spaces.nb for the programming code.)



n Distinct Inequivalent | Distinct k-primal | Inequivalent k-primal
topologies | topologies topologies topologies
1 1 1 1
2 4 3 3
3 29 9 26 8
4 355 33 279 25
) 6942 139 4937 88
6 209527 718 141831 398
7 9535241 4535 6418715 2327
Table 1: Enumerating k-primal topologies
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Fig. 4. 4-node nonhomeomorphic k-primal topologies

Recall that an element z in a primal space (X, P(f)) is said to be a periodic
point if f*(z) = x for some n € N,n # 0. The least n € N such that f"(z) =«
is called the period of x. Clearly, periodic points with period # 1 are cyclic
points. Because of its importance, we recall the following lemma as well as its
proof.

Lemma 2.3. [9, Lemma 2.1]. Let f: X — X be a function. Then x € X is a
minimal point of (X, <y) if and only if x is a periodic point of f.

Proof: Suppose that x is minimal in (X, <¢). As f(z) <; z, we get z <; f(x).
Hence, z is periodic.
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Fig. 5. 5-node nonhomeomorphic k-primal topologies

Conversely, if z is periodic and y <; z, then there exists n € N such that
y = f"(x). But, as z is periodic, we may write z = f™(y) for some m € N, so
z <t y, showing that z is minimal. O
If P = (X, <) is a partially ordered set, recall that <* is called a linear ex-
tension of < if and only if <* is a total order on X which contains <. Szpilrajn’s
theorem guarantees that every partial order is contained in a linear order.
In order dimension theory, the (Dushnik—Miller) dimension of a partially
ordered set P is the least natural number ¢ for which there exists a family
{<1,...,<¢} of linear extensions of P whose intersection is the ordering of P.



Such linear extensions form a realization of P. We denote the dimension of P
by dim(P).

One of the major results of dimension theory is Hiraguchi’s Theorem [13],
which gives the best upper bound on the dimension of a partially ordered set in
terms of its cardinality. It states that the dimension of a partially ordered set

P = (X, <) is at most {%J, provided |X| > 4.
Since every partial order on a finite set is an intersection of a finite number
of linear orders and every linear order is a quasiorder, we have the following

result.

Proposition 2.4. FEvery finite partially ordered set P is a k-primal space for
some positive natural number k.

Proof: Let P = (X, <) be a finite partially ordered set and let (X,C) = {z,, C
--+ C 21} be a linear extension of (X, <). Then, we can define a map f- € X~
by foc(z;) = xi41 and fo(2,) = @y

For any realization {Cq,...,Cg} of P, we may form fr, as above for each
i=1,...,k, and this gives a family of primal spaces {(X,P(fc,)):i=1,...,k}
such that

k
(X’S) = (vap(fgl)> = (X,P(fgu'"vfgk))'

Therefore, (X, <) is a k-primal space. O
Using Proposition and the Dushnik-Miller dimension, we introduce the
notion of primal dimension of a partially ordered set as follows.

Definition 2.5. The primal dimension of a finite partially ordered set P =
(X, <), denoted dimp(P), is the least natural number k such that P is k-primal.

The following result is immediate.

Proposition 2.6. For any finite partially ordered set P, we have dimp(P) <
dim(P).
Since dimp (P) < dim(P) and dim(P) is at most Vf—‘} we have dimp(P) <

V);—‘J for any P = (X, <) with |X| > 2. The following examples show that the

previous inequality may be strict.

Examples 2.7.

1. The 2-dimensional partially ordered set (dim(P) = 2) illustrated in Figure
@ is 1-primal (dimp(P) = 1).

2. A nontrivial ezample showing that the inequality in Proposition 18 strict
is shown in Figurem The 3-dimensional partially ordered set (dim(P) =
3) dllustrated is 2-primal but not primal (dimp(P) = 2).



Fig. 6. A 2-dimensional partially ordered set which is 1-primal
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1 3
1 3 4 6
— 3 2 ﬂ 1 2
4 6 5 5
6 4
7 7
7
(Xag) = (X7§f1) ﬂ (ngfz)

Fig. 7. A 3-dimensional partially ordered set which is 2-primal

Remark 2.8. Hiraguchi’s bound is the best possible (i.e. there exists a partially
ordered set P = (X, <) such that dim(P) = {%lJ ). For instance, consider the

ordered set St, = {a1,...,an,b1,...,b,} ordered as follows:
{a1,...,an} and {by,...,b,} are both antichains.
No b; is a lower bound of an a;.
a; < b; if and only if i # 5.

It is known that Dim(St,) = n (for more information, see [8) Theorem 4.1]).
The 5-dimensional ordered set Sts is illustrated in Fz'gure

Fig. 8. The 5-dimensional ordered set Sts; dimp(Sts) = dim(Sts)

Using the example of Remark we deduce the following proposition.



Proposition 2.9. Hiraguchi’s bound is also the best possible bound for the pri-
mal dimension (i.e. there exists a partially ordered set P = (X, <) such that

dimp(P) = [%'J ).

Proof: A similar argument can be used to show that the primal dimension
dimp(St,) = n (for n > 3). In fact, fix a family I = {f1,..., fx} of functions
from St,, to itself such that ﬂle <p =<.

For any fixed ¢ € {1,...,n}, there exists f; € I such that a; £, b;. For
J # 4, then we have a; < b; and a; < b;. For k # 4,7, we have a; < b;, and

a; < bg. Thus, {a;,a;} C (| bg) C {bk}P(fl). Hence, a; and a; are comparable

in (X,<p). If a; <y, a;, then a; <y, b; which is absurd. Then, a; <y, a; and
consequently a; <y, b;. So we have obtained that every <y, (f; € I) contains at
most one pair (a;,b;) such that a; £y, b;. Thus there exists an injective mapping
¢ {1,...,n} — I which assigns to every i a map f; € I such that a; £y, b;.
Therefore n < || follows.

Hence, the Hiraguchi’s bound is also the best possible bound for the primal
dimension. O

3. A characterization of k-primal spaces

Recall that a qoset (X, <) is connected if and only if for any a,b € X, there
exists a finite sequence (a = 1, X2, ....., p_1, Ty = b) such that x; and x,1 are
comparable for every 1 < i < n — 1. Hence, it is clear that every qoset (X, <)
can be written as a disjoint union of connected qosets. Now, suppose that
X = Ule Cy, is the decomposition of X into k disjoint connected qosets. Then,
the induced quasi-order by < on every C; will be denoted by <¢,. One can see
easily that for every z € X, the downset of z in (X, <) is exactly the downset
of x in (C}, <¢,), where Cj is the unique connected qoset of X containing x. In
this case, we write (| 7) = (l¢; x). Finally, by a strict goset we mean any qoset
(X, <) which is not a partially ordered set.

Now, we are in a position to give the main result of this paper. We show
that a finite qoset (X, <) is k-primal for some k if and only if whenever a cyclic
point a is a lower bound of vy, it is below every other lower bound of y.

Theorem 3.1. Let (X, <) be a finite qoset. Then, (X, <) is a k-primal space
for some k € N,k # 0 if and only if for every cyclic point a and every xz,y € X

we have
a <
{ =Y — a <.
<y

Proof: The proof will be divided into many steps.

Step 1: First, we remark that the condition in Theorem implies that
every cyclic point is minimal. Indeed, let a be a cyclic point. Consider x € X
with < a. Since a < a and = < a, then by hypothesis a < x. Therefore, a is a
minimal point.




Step 2: Let (X, <) be a finite strict qoset which is connected and satisfies
the condition in Theorem Let us show that (X, <) has a unique cycle and
every minimal point is a cyclic point.

Indeed, by the hypothesis, < is a strict quasiorder, so there exists a cyclic
point @ € X (a is also a minimal point by Step 1). Let b be a minimal point in
X. We must show that b € ({ a).

Since (X, <) is connected, there exists a finite sequence (a = v1,...,v, = b)
with {v1,ve,...,v,} C X, such that v; and v;41 are always comparable. If there
exists a point v; such that v; # a, then take v;, (igp > 1) to be a first such point.
Hence, v;,—1 > a and the two points v;,_; and v;, are comparable. So, we have
two cases:

(1) Vig—1 < Vi, = Q < Vg -
(2) v, <vip—1 = a <, (by our condition, since a < v;;_1).

In both cases, a < v;,. Finally, @ < b and by the minimality of b, b < a. So
b is in the same cycle with a.

Step 3: Let (X, <) be a finite connected strict qoset which satisfies the condi-
tion of Theorern Then, (X, <) is k-primal. Indeed, let (| v1) = {v1,...,vp}
be the unique cycle in (X, <). Define the subset X* = (X — (J v1)) U{v1} en-
dowed with the induced quasi-order <x«. Then, (X*, <x-) is a partial ordered
set (note that v is the least element in X*). So, by Proposmon- (X*, <x~)
is k-primal. Hence, there exist f{,..., fi € X*X such that

Sxe = Sfpf

For any « € X*, if we denote by (.. ) the downset of x in X*, we can
write:

T PUD
{z}

=

(b2) = (b @) U(bor) = U (o).

i=1

For each function f; we define the function f; € XX by:

{ filz) = fi(x) Vo € X* —{u}
filv;) =vj41if 1 <j<p—Tand fi(vp,) =01

Pf) P(fi)

Since Vx € X*, v €
fi)

< {}

then for each f; and for each x € X*, v € {x}

So, it is clear that Vo € X*, {z}

N o

quently

and conse-

7)(f‘l

_ mp(ﬁ) U (\I/ 'Ul),
R S AR

Ve e X*, {x}

and if 2 € (| v1), then by the construction {z}
(1 2).



In summary, we get

k k i
veex, N =N& " udu)=a).

i=1 i=1

Hence, <=<y, . . and (X, <) is k-primal.

Step 4: The proof of the main theorem.
Let (X, <) be a k-primal space.
Suppose a,x,y € X, a is a cyclic point, and a <y, x <y. We have

(ba)ufa} (L)
— (aufaycy v

1.k
({y} v ) is totally quasi-ordered (because (X, <y,) is a primal

space). So, a and x are comparable in (X, <y,) and thus by Lemma Vi =

.k, a <y, x. Finally, a < .

Conversely, let {C1, ..., Cp} be the family of connected components of (X, <)
each endowed with the quasi-order induced by that of X.

Since each connected quasi-ordered set (C;, <¢;) fulfills our condition, then
by Propositionand Step 3 each (C;, <¢,) is k;-primal. That is, Vi = 1,...,p,
there exist k; functions f; 1,..., fix, from C; to C; such that

<c, = Sfi,lv"'vfi,ki :
Let k = max{k;:¢=1,...,p}. Foreachi=1,...,p and k; < j < k define
the functions fiJ = f1'71.
We define the functions g; € X~ (t =1,...,k) by
gt(l‘) = fiﬂg(l‘) lf T € Cl

Thus, g; restricted to component C; is the map f; ;.
Now, let z € X. Since x belongs to a unique C,,, we have

kn k k
(\L .’E) \I/C .’E n P(fn i) ﬂ P(fn.,5) m P(QJ

In conclusion, (X, <) is a k-primal space for k = max{k; :i=1,...,p}. O

The general form of a k-primal space is suggested in Figure and the first
paragraph of the proof of Theorem

10



Fig. 9. A qoset which is not k-primal

Examples 3.2. 1. Let X = {z,y,a,b} equipped with the quasiorder defined
as in Figure[9]
Suppose that (X, <) is k-primal for some integer k. Hence, < is generated
by the k functions f; : i =1,.....k. Since (} a) = ({ b) = {a,b}, then for

—P(fi —P(fi . .
any function f; we have {a} W _ {b} SR and thus a,b are cyclic points
in (X, <y,), which implies by Lemma that a and b are minimal points

in (X’ Sfl)

—P(fi .
Now, since ({ y) = X, then {y} o _ X for each i = 1,...,k. Hence

(X, <y,) is a totally quasi-ordered set containing the minimal points a and

b, so {a,b} C mp(fi) for each ¢ = 1,.....,k. Therefore {a,b} C QTS.

This is a contradiction because {x} ~ = {x}.
In this example, we have a is a cyclic point, a <y and r <y but x and a
are mot comparable.

2. An infinite qoset (X, <) satisfying the condition of the main result need
not be k-primal for any integer k.
For this, take the partially ordered set (N,F) where the partial order &= is
defined by : Yn # 0,n F 0 and the numbers 1,2, ... are pairwise incompa-
rable, as shown in Figure

/OM‘
1 2 3  n

Fig. 10. An infinite partially ordered set which is not k-primal

Then, (1 0) = N and for each a # 0, ({ a) = {a}. Suppose (N,}) is
k-primal, with & generated by the k functions f;,(i = 1,...,k). Then,
J0)= ﬂlemp(m = N. So, for any function f; we have @P(m =N

and consequently,

Vi=1,....,k Vn e N*=N—-{0}, ;N a;, e N*:n = f""(0).

11



Now, for each f; we have

= (L), f2) )
= {0,
(for some unique a; 1 € N¥)

- {O,fi(O), N .,ff“‘l(())} .

P(fi)

{1}

Hence,

ay= = ﬂz A1y is an infinite set, which is impossible. While the
partially ordered set (N,F) has no primal dimension, we note that it is
2-dimensional: for the two linear extensions <i and <o of - given by

(fl

n+1<in VneN
n<on+1l VneN" andn<50 VneN,

the family {<1,<s} is a realization of (N, ).

4. Complementation in the lattice K PTOP(X)

The study of complementation in the lattice TOP(X) of all topologies on a
set X was advanced by A. Steiner [27] and variations on this theme have been
studied extensively since. (See |6l [7)[17}122] |23} 25| |26].) Recall that 7 and 7*
are complements if 7V 7* is the discrete topology and 7 A 7* is the indiscrete
topology. For a positive integer k, let k-PTOP(X) be the collection of k- primal
topologies on X. Let KPTOP(X) = ;o k-PTOP(X) = {r €e TOP(X) :
is k-primal for some k € N}, ordered by C. Recall that 7€ KPTOP(X) if and
only if there exists a natural number k and primal topologies P(f;) (i =1,...,k)
with 7 = \/f:1 P(fi), where the supremum is taken in TOP(X). It follows that
KPTOP(X) is closed under finite suprema. Since the indiscrete topology on
X = {x0,...,xn1} is P(f) where f(2;) = Z(i41 mod n), it is the smallest
element of KPTOP(X). Thus, if X if finite, KPTOP(X) is a (complete)
lattice. Any lattice which contains the primal topologies must contain finite
suprema of primal topologies. We record this as a theorem.

Theorem 4.1. If X is finite, KPTOP(X) is a lattice, and is the smallest
lattice in TOP(X ) which contains all the primal spaces.

We note that if X = {...,a_2,a-1,a0,a1,02,...} is countably infinite,
KPTOP(X) is not a lattice. With f(a;) = a;41 and g(a;) = a;—1, we find that
the only lower bound of P(f) and P(g) in TOP(X) is the indiscrete topology,
so the only candidate for P(f) A P(g) in KPTOP(X) is the indiscrete topol-
ogy. However, by Proposition the indiscrete topology X is not k-primal, so
KPTOP(X) is not a lattice.

Theorem 4.2. The following are equivalent.

12



(o) KPTOP(X) is a sublattice of TOP(X).
(b) KPTOP(X) is a distributive lattice.
(c) | X] <2.

Proof: If |X| < 2, then KPTOP(X) = TOP(X), so (c) implies (a) and (b).
Suppose X = {1,2,...,n} for n > 3. The example used in Theorem 3(c)
of [22] shows (a) implies (c). Specifically, consider the topologies 71 and 7o
on X whose specialization quasiorders are <; on X defined by i <; 4 for all
1€ X and 3 <1 2 <4 1, and <5 on X defined by i <5 ¢ for all i € X and
3 <5 1 <5 2. Figure shows 7,79, and 71 A 7o, where the inf is taken in
TOP(X). By Theorem (3.1} this inf is not in KPTOP(X), so KPTOP(X)
is not a sublattice of TOP(X). In TOP(X), 71 A 72 has basis of minimal
neighborhoods {{1,2},{1,2,3}} U {{i} : i € X — {1,2,3}}. In KPTOP(X),
71 A T2 has basis {{1,2,3}} U {{i} :i € X —{1,2,3}}.

1 o o 2 o o
2 1 T
3 3

T1 T2 T1 N\ T2

Fig. 11. 71 A2 is not in KPTOP(X)

To see (b) implies (c), suppose X = {1,2,3} U X'. Consider the topologies
7; having specialization quasiorders <; as shown in Figure Now 71 A 79 is

1 2 3 1
/\ ° - \/ ° .- 1 ° - PR
2
2 3 1 J 2@3
3
T1 T2 T3 GRAYP)

Fig. 12. 71 A [r2 V 13] # [11 AT2] V [11 A T3]

also shown in Figure Tt is easy to see that 71 A 73 = 73, and then [y A 2] V
[11 A 3] = 73. However, since 7o V 73 is the discrete topology, 71 A [12 V 73] =
T1 # [T A 72| V |11 A 13]. Thus, KPTOP(X) is not distributive. (It is also easy
to check that T3 \Y [7’1 /\’7'2] =173 7£ T = [Tg \Y Tl] A [Tg AN 7'2].) O

By Theorem if a finite connected Alexandroff topological space (X, T)
is k-primal, then the associated specialization quasi-order < on X is either
a partially ordered set (if it has no cyclic points), or it is obtained from a
partially ordered set with minimum element by splitting the minimum element
into several elements in a cycle. That is, if (X, <) is given the equivalence
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relation a ~ b if and only if a<b and b=<a, then there is one equivalence
class [x] which is not a singleton, and it is minimum in the resulting partial
order on the =-equivalence classes defined by [a] < [b] if and only if a <0.
This quotient space of ~-equivalence classes, with the specialization topology
consisting of the <-increasing sets, is the Tp-reflection of (X, 7). See [4l [16]
for further information on this theme. It is well-known that an Alexandroff
space (X, 7) is connected (as a topological space) if and only if the associated
quasiorder (X, <) is connected (as a graph). If X = (X, <) is a quasiordered
set, by X°P we mean the quasiordered set (X, >).

Theorem 4.3. If X is finite, KPTOP(X) is a complemented lattice. That is,
if T is a k-primal topology on a finite set X then T has a complement which is
j-primal for some j € N.

Proof: Suppose 7 is k-primal with connected components P, U Cy,..., P, U
Crns Py, Py La, ..., Ly, In, ..., I, where each C; is a cycle (with more than
one point) appearing below the partially ordered set P; (1 < i < n), each P;
(n+1 <i<m)is a partially ordered set with more than one element, each L;
is a cycle with more than one element, and |I;| =1 (1 < i < j), as suggested in

Figure

é @ @ L

Fig. 13. The quasiorder for an arbitrary k-primal space (X, 7)

For1 <i<n,let M; = C;, and for n +1 < i < m let M; be the set of
minimal points in P;. (Thus, in all cases, M; is the set of minimal points in its
component.) Let M = ", M;, L =i_, Li, and I = J_, I;.

Case 1: M = (. Then there are no components of form P; U C; or P}, so
X =LUI. Foreachi=1,...,t pick [; € L; and let U = T U {l;}{_,. With
T ={U}U{{z} : 2 € X — U}, it is easy to see that 7* is a complement of 7.
Furthermore, since 7* has one cycle and several isolated points, it is 1-primal.

Case 2: M # ). Let (X,7*) be the Alexandroff space whose specialization
quasiorder <* is the partially ordered set depicted in Figure We describe the
order <* on L. Each L; has at least two elements [; ; and [; 2. We form chains
lig <flogg <o <*lgand I o < -0 <* g9 <* [y 2, with elements of each
chain unrelated to elements of the other, and with every element of L not in one
of these chains related only to itself. Recall that the smallest 7*-neighborhood
N*(z) of x is T @, and U is 7*-open if and only if U = 1, U ={y € X : Ju €
Uyu<*y}. In (X,7), N(z) = 1 2, or for emphasis, Tx x.
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First we show that N(x) N N*(z) = {z} for all € X by considering cases
based on where x lies.

M as an antichain

I as an antichain

lt,l l1,2 e o o o o

L as shown to the right :
| | |
(Py — My)°P I21 :
| | |

other points of L

(Pm - Mm)Op

Fig. 14. The quasiorder for the complement (X, 7*)

Ifz €I, Nz) = {z}. If z € M, N*(z) = {z}. In each of these cases,
N(z)NN*(x) = {z}.

If x € L;, then N(z) "N N*(x) = L; N N*(z) = {z}.

IfoPifMi,

i—1 i—1
N*(x) = tva = MUIULU|JP/U |p o = MUIULU|JPU |x 2.
j=1 j=1

Since N(z) = tx ¢ = 1p, ¢ C P;, we have N(z)NN*(2) =1tx z N |x z = {z}.
Thus, 7V 7* is the discrete topology.

Next, we show that 7 N 7* = {, X}. Suppose U € 7N7* and z € U.
Again, we consider cases based on where = lies. Now U is <-increasing and
<* increasing, so we may show U = X by showing that starting from x and
iteratively taking 1 and T, we get every point of X.

Ifzel, M CthxCU,sotM CU. But since M # 0, + M contains
P,— M, foralli=1,...,m. Now T, (P, — M;,) = X. Thus, U = X.

If © € M; for some 4, then N(z) =12 C U and 1 « contains a point
x' € P; — M;. Now 1, 2’ contains M UIU L, so U contains M UI U L. Now
U = 1U must contain 1 (M UTUL)=X. Thus, U = X.

If x € (P, — M;) for some ¢, then MUIUL C 1,z C U, and 1 (MUIUL) C
TU=U,soU = X.

If z € L; for some 4, then L; = N(z) =1 a C U. Considering the order
<* on L (as shown in the box in Figure , N*(z) = T+« contains one point
ar € {lg1,lk2} from each Ly (1 < k < j), so U must contain N(ax) = L
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for each k. This shows L C U. Thus, 1 L = (M UTUL) C U, and thus
X=1(MUIUL)CU. Thus, U = X.

In all cases, TN 7* = {0, X}, so 7* is a complement of 7.

Finally, since the quasiorder for 7* is in fact a partial order, Proposition
or Theorem show that 7* € KPTOP(X). O

Since the quasiorder for 7* described in Figure is a partial order, this
construction produces a Ty complement for X. In particular, together with
Propositionthis shows that every T, topology on a finite set has a T, com-
plement.

Also, it is easy to see that if X is connected and is a partially ordered set Py
or a partially ordered set above a cycle P; U Cq, then this algorithm produces a
complement which is also connected.

Note that the result of Theoremfails if X is infinite: the discrete topology
P(id) is 1-primal, but its only complement is the indiscrete topology, which is
not k-primal for any k.
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