To appear in **Topology Proceedings** ©2022 Topology Proceedings

COMPLEMENTS OF TOPOLOGIES WITH SHORT SPECIALIZATION QUASIORDERS

VERONICA PIERRE AND TOM RICHMOND

ABSTRACT. By identifying a topology τ on a finite set X with its specialization quasiorder \leq , we investigate the complements of τ in the lattice of topologies on X in cases where the heights of the specialization posets are small.

Dedicated to Ralph Kopperman, a pioneer in asymmetric topology.

1. INTRODUCTION

If τ is a topology on a finite set X, associating the specialization quasiorder defined by $x \leq y$ if and only if $x \in cl\{y\}$ gives a one-to-one correspondence between the topologies and quasiorders on X. We interchangeably denote a topology τ by its specialization quasiorder \leq . Thus, the smallest neighborhood N(x) of x corresponds to $\uparrow x = \{y \in X : x \leq y\},\$ and we will use N(x) and $\uparrow x$ interchangeably. A quasiorder \leq on X gives an equivalence relation \approx defined by $x \approx y$ if and only if $x \leq y$ and $y \leq x$, and gives a partial order on the \approx -equivalence classes defined $[x] \leq '[y]$ if and only if $x \leq y$. To draw the Hasse diagram for a quasiorder, we draw the Hasse diagram for the related partial order \leq' and represent each point $[x] \in X/\approx$ by the set of points of X which make up [x]. In this context, we will call the set of points of [x] a *cloud*. A quasiorder \leq is a partial order if and only if each cloud is a singleton, or equivalently, if τ is T_0 . A quasiorder \leq is a total order if and only if τ is an irreducible T_0, T_5 topological space (see [6]) or equivalently, if τ is T_0 and is a nested collection of open sets. The height of a quasiordered set (X, \leq) is the

²⁰¹⁰ Mathematics Subject Classification. Primary 54A10, 06F30; Secondary 06C15.

Key words and phrases. Alexandroff space, specialization quasiorder, complement, door space, submaximal space, Whyburn space.

maximum number of distinct points in a chain in (X, \leq) . In the lattice of topologies on X, τ' is a complement of τ if $\tau \vee \tau' = \tau_D$ and $\tau \wedge \tau' = \tau_I$, where τ_D is the discrete topology on X and τ_I is the indiscrete topology. For finite sets, $\tau \vee \tau' = \tau_D$ if and only if $\uparrow x \cap \uparrow' x = \{x\}$ (that is, $N(x) \cap N'(x) = \{x\}$) for all $x \in X$. If \leq is a connected partial order on X (that is, the Hasse diagram for \leq is a connected graph), then \geq is a complement to \leq . In 1958, Hartmanis proved that every topology on a finite set has a complement, and in 1966 Anne Steiner proved that every Alexandroff topology has an Alexandroff complement. See [10, 15, 8]. Further results on complementation in lattices of topologies are given in [1, 4, 12, 16].

2. TOTALLY ORDERED RESULTS

Theorem 2.1. If τ is a topology on X whose quasiorder \leq is a partial order of height 2 or 3, then τ admits a complement τ' whose quasiorder \leq' is a total order.

Proof. Let $K = \{x \in X : x \mid y \quad \forall y \neq x\}, T = \{x \in X : x \text{ is maximal in } X - K\}, M = \{m \in X : b < m < t \text{ for some } b, t \in X\}, \text{ and } B = \{x : x \text{ is minimal in } X - K\}.$ If the height of \leq is 2, then $M = \emptyset$. Note that M is an antichain, for otherwise the height of X would be greater than 3. Also, B is clearly seen to be an antichain. Put total orders on the sets $T, M \cup K, B$, and then form the total order \leq' on X by taking $T <' (M \cup K) <' B$. We will show that \leq' is a complement of \leq .

For $x \in T \cup K$, $\uparrow x = \{x\}$, so $\uparrow x \cap \uparrow' x = \{x\}$. For $m \in M$, $\uparrow m \subseteq \{m\} \cup T$ and $\uparrow' m \subseteq M \cup K \cup B$, so $\uparrow m \cap \uparrow' m = \{m\}$. For $b \in B$, $\uparrow b \subseteq \{b\} \cup M \cup T$ and $\uparrow' b \subseteq B$, so $\uparrow b \cap \uparrow' b = \{b\}$. Thus, $\tau \lor \tau' = \tau_D$.

Suppose $U \in \tau \cap \tau'$ and $x \in U$. If $x \in T$, $M \cup K \cup B \subseteq \uparrow' x$ and $X = \uparrow (M \cup K \cup B) \subseteq \uparrow\uparrow' x \subseteq U$, so U = X. If $x \in M \cup K \cup B$, then $\uparrow' x$ contains some $b \in B$, $\uparrow b$ contains some $t \in T$, $\uparrow' t$ contains $M \cup K \cup B$, and $\uparrow (M \cup K \cup B) = X$. Thus, the only nonempty set open in τ and τ' is X.

Suppose τ is a topology on X whose quasiorder \leq is a partial order of height 2 or 3. With the notation of the proof above, if $t = |T|, m = |M \cup K|$, and b = |B|, the arbitrary choice of the total orders on $T, M \cup K$, and B show that τ admits at least t!m!b! complements τ' with total quasiorder \leq' .

The next theorem shows that the condition in Theorem 2.1 that the quasiorder \leq is a partial order is necessary.

Theorem 2.2. If (X, \leq) is a quasiorder which is not a partial order, then it has no totally ordered complement.

COMPLEMENTS OF TOPOLOGIES WITH SHORT SPECIALIZATION QUASIORDER ${\bf S}$

Proof. Under the hypotheses, there exists $a \neq b$ with $a \leq b, b \leq a$. If \leq' is a complement in which a and b are related, without loss of generality assume $a \leq' b$. Now $\{a, b\} \subseteq \uparrow \{a\} \cap \uparrow' \{a\}$, so $\uparrow a \cap \uparrow' a \neq \{a\}$.

Theorem 2.3. If $\tau \neq \tau_D$ is a topology on a finite set X, then τ has a T_0 complement τ' whose specialization quasiorder is a partial order of height $h \leq 3$.

Proof. Let $T = \{x \in X : [x] \text{ is maximal in } X \mid x \}$ where $a \approx b$ if and only if $a \leq b$ and $b \leq a$, [x] is the \approx -equivalence class of x, and the quotient space $X \mid x \in T_0$ -reflection of (X, \leq) . Let $B = \{x \in X : [x] \text{ is minimal in } X \mid x \in \}$, and $M = X - (T \cup B)$. Make T, M, and B antichains in \leq' , with T <' M <' B. Thus, t <' m <' b for all $b \in B, m \in M, t \in T$ and $x \leq' x$ for all $x \in X$. Now \leq' has height less than three and is a complement of \leq .

Note that this result gives a converse to Theorem 2.1: If \leq is a total order on X, then \leq has a T_0 complement whose quasiorder is a partial order of height $h \leq 3$. We can improve on this.

Theorem 2.4. If \leq is a total order on X and |X| > 1, then \leq has a T_0 complement \leq' where \leq' is a partial order of height 2.

Proof. If the order on X is $1 < 2 < \cdots < n$, let $A = \{1, 2, \ldots, n-1\}$. Define \leq' by making A an antichain and putting n <' A. Now \leq' is a complement of \leq with height 2.

3. SUBMAXIMAL, DOOR, AND WHYBURN SPACES

A topological space X is submaximal if every dense subset is open, is a door space if every set is either open or closed, and is Whyburn if for every non-closed $A \subseteq X$ and every $x \in clA - A$, there exists $B \subseteq A$ with $clB - B = \{x\}$. Submaximal spaces were investigated in [2, 3, 5]. Edwin Hewitt [11] used the term "MI space" for submaximal spaces with no isolated points; Theorem 3.3 below concerns such spaces. Whyburn spaces ([13]) are called AP-spaces in [14]. Further references on these spaces can be found in [7], where the following results are given.

Theorem 3.1 (Lazaar, Sabri, Tahri). Suppose τ is a topology on a finite set with specialization quasiorder \leq . Let h be the height of \leq .

- (1) τ is submaximal if and only if \leq is a partial order and $h \leq 2$.
- (2) τ is a door space if and only if $h \leq 2$ and all chains of length 2 share a common point, which is necessarily a maximal or minimal point.
- (3) τ is Whyburn if and only if $|\downarrow x| \leq 2$ for all $x \in X$.

We note that the condition to be a door space implies that the quasiorder \leq is a partial order. Furthermore, (X, τ) is a door space $\Rightarrow (X, \tau)$ is submaximal, and T_0 + Whyburn \Rightarrow submaximal.

If (X, \leq) is submaximal, we take $X = T \cup B \cup K$ where $T = \{t \in X : b < t \text{ for some } b \in X\}$, $B = \{b \in X : b < t \text{ for some } t \in X\}$, and $K = X - (T \cup B)$.

Theorem 3.2. Suppose (X, \leq) is submaximal and not discrete. If \leq' is a complement of \leq , then

- (a) every minimal \leq '-cloud contains some $t \in T$ and no points b < t, and
- (b) every maximal \leq' -cloud contains an element of B.

Proof. First note that any set $A \subseteq X$ with $T \subseteq A$ is \leq -increasing. If C is a minimal \leq' -cloud which is disjoint from T, then we have the contradiction that $C \notin \{\emptyset, X\}$ and X - C is \leq -increasing and \leq' -increasing. Thus, every minimal \leq' -cloud C contains some $t \in T$. If C also contains b < t, then we have the contradiction $t \in \uparrow b \cap \uparrow' b = \{b\}$. This proves (a). Suppose there is a maximal \leq' -cloud $D \neq \emptyset$ containing no point of B. Then $D \in \tau \cap \tau'$. If D = X, for any b < t we have the contradiction $t \in \uparrow b \cap \uparrow' b$. Thus, $X \neq D \in \tau \cap \tau'$, contrary to \leq' being a complement of \leq . This proves (b).

A submaximal space $X = T \cup B \cup K$ has many complements. For one, make T and B antichains in \leq' and put $t <' k_1 \leq' k_2 <' b$ for every $t \in T$, $k_1, k_2 \in K$, and $b \in B$. For another, take $t_1 \leq' t_2 <' k_1 \leq' k_2 <' b_1 \leq' b_2$ for all $t_i \in T$, $k_i \in K$, and $b_i \in B$. This quasiorder has three clouds, T <' K <' B. For a third complement, consider clouds T and $K \cup B$ with $T <' K \cup B$. Note that, except in the simplest cases, the complements described here involve clouds with more than one point (so, they are not T_0 -complements), and have height h > 2 (so they are not submaximal complements).

Theorem 3.3. Suppose (X, \leq) is submaximal and not discrete. Then \leq has a submaximal complement if and only if it has no isolated points.

Proof. Suppose \leq and \leq' are complements and each is submaximal. All the clouds in \leq are singletons, so Theorem 3.2 implies that every \leq -minimal point is an element of T and every \leq -maximal element is an element of B. Any isolated point would thus be in $T \cap B$, a contradiction. Thus, \leq (and similarly \leq') can have no isolated points.

Suppose (X, \leq) has no isolated points, so $K = \emptyset$ and X is partitioned into $T \cup B$. Let C_1, \ldots, C_n be the connected components of the graph of \leq and for each C_j , pick $b_j \in B \cap C_j$. Let \leq' be the partial order \geq , except

4

COMPLEMENTS OF TOPOLOGIES WITH SHORT SPECIALIZATION QUASIORDERS

that the points b_1, b_2, \ldots, b_n are permuted to b_2, \ldots, b_n, b_1 , as suggested in Figure 1. Formally,

$$x \leq' y \iff \begin{cases} y = b_j & \text{and } x = b_j \quad (j = 1, \dots, n) \\ y = b_j & \text{and } x > b_{j-1} \quad (j = 2, \dots, n) \\ y = b_1 & \text{and } x > b_n \\ y \notin \{b_1, \dots, b_n\} & \text{and } x \geq y. \end{cases}$$

Now every point $x \in C_j - \{b_j\}$ is connected by $a \leq \bigcup \geq path$ in $C_j - \{b_j\}$ to a point $t \geq b_j$, and such a path is also $a \leq \bigcup \leq'$ path. Now suppose $t_1 > b_1$, so $t_1 \in C_1 - \{b_1\}$. Now $t_1 <' b_2 < t_2$ for some $t_2 \in C_2 - \{b_2\}$. We have $t_2 <' b_3 < t_3$ for some $t_3 \in C_3 - \{b_3\}$. Continuing in this manner, we find $a \leq \bigcup \leq'$ path from t_1 to $b_2, \ldots, b_3, \ldots, b_1 < t_1$. With a shift of indices, we can similarly find $a \leq \bigcup \leq'$ path from any $t_j > b_j$ through all the points $b_{j+1}, \ldots, b_n, b_1, \ldots, b_j$ and back to t_j . Since every point $x \in C_j - \{b_j\}$ is connected to a point $t_j > b_j$ it is connected to every point of $\bigcup_{j=1}^n C_j - \{b_j\}$ by a path which contains all the points b_1, b_2, \ldots, b_n . Thus, X is $\leq \bigcup \leq'$ connected, and it follows that $\tau \cap \tau' = \{\emptyset, X\}$.

From the construction, every point of X is maximal in \leq or in \leq' , so either $\uparrow x = \{x\}$ or $\uparrow' x = \{x\}$. Thus, \leq' is a complement of \leq . Clearly \leq' is a partial order with height 2, so \leq' is submaximal.

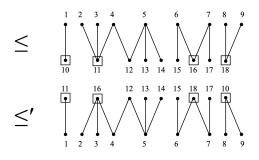


FIGURE 1. To obtain a complement of \leq , take \leq' to be \geq with the boxed elements from \leq cyclically permuted in \leq' .

Since door spaces are submaximal, the necessary conditions from Theorem 3.2 for complements of submaximal spaces apply to door spaces. Indeed, those conditions are also sufficient for door spaces.

Theorem 3.4. Suppose (X, \leq) is a door space, the point t common to all chains of length 2 is maximal, and $B = \{b \in X : b < t\}$. Then \leq' is a complement of \leq if and only if

VERONICA PIERRE AND TOM RICHMOND

- (a) there is a minimum ≤'-cloud and it contains t and no points of B, and
- (b) every maximal \leq '-cloud contains an element of B.

Proof. Suppose \leq' is a complement of \leq . By Theorem 3.2, every minimal \leq' -cloud contains t, since $T = \{t\}$ for a door space. Thus, every minimal cloud is the cloud containing t, so there is a minimum \leq' -cloud. Thus, (a) and (b) follow from Theorem 3.2.

Now suppose (a) and (b) hold. Suppose $U \in \tau \cap \tau'$ and $x \in U$. By (b), $\uparrow' x$ contains a point $b \in B$, so $\uparrow\uparrow' x$ contains t, and $\uparrow'\uparrow\uparrow' x$ contains $X = \uparrow t$. Thus, $\tau \cap \tau' = \{\emptyset, X\}$. If $x \in X - B$, $\uparrow x = \{x\}$. If $x \in B$, by (a), $t \notin \uparrow' x$, and since $\uparrow x = \{x, t\}, \uparrow x \cap \uparrow' x = \{x\}$. Thus, \leq' is a complement of \leq .

Corollary 3.5. Suppose (X, \leq) is a door space with n elements, the point t common to all chains of length 2 is maximal, $B = \{b \in X : b < t\}$, and |B| = k. Then \leq admits exactly k(n-2)! totally ordered complements and at least $k \cdot T(n-2)$ complements, where T(j) is the number of topologies on j points.

Proof. The totally ordered complements of \leq have form $t <' x_1 <' x_2 <' \cdots <' x_{n-2} <' b$ where b is one of the k elements of B and $x_1 <' \cdots <' x_n$ is one of the (n-2)! total orders on $X - \{b, t\}$. If $b \in B$ and Q is any quasiorder on $X - \{t, b\}$, then t <' Q <' b gives a complement of \leq . There are k choices for b and T(n-2) choices for Q.

If (X, \leq) is a Whyburn space, let $C = \{x \in X : x < y < x \text{ for some } y \in X\}$, $T = \{t \in X - C : x < t \text{ for some } x \in X\}$, $B = \{b \in X - C : b < x \text{ for some } x \in X\}$, and $K = X - (T \cup B \cup C)$, as suggested in Figure 2.

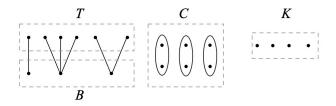


FIGURE 2. A generic Whyburn space.

Some Whyburn spaces have Whyburn complements.

Example 3.6. Suppose a finite Whyburn space (X, \leq) has $K = \emptyset$ and |T| = |B|. (Thus, X has no isolated points and $|\uparrow x| \leq 2$ and $|\downarrow x| \leq 2$ for every $x \in X$.) As suggested in Figure 3, inverting the order \leq and

6

COMPLEMENTS OF TOPOLOGIES WITH SHORT SPECIALIZATION QUASIORDER ${\bf 3}$

cyclically moving each element of $B \cup C$ one place to the right gives a complement \leq' . Replacing each cloud $\{2k, 2k + 1\}$ in \leq' by the segment $2k + 1 \leq'' 2k$ gives a T_0 complement \leq'' .

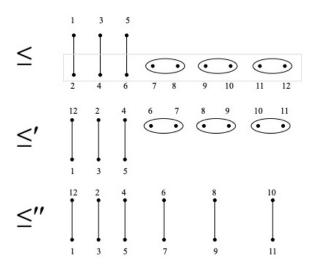


FIGURE 3. To obtain a complement of \leq , take \leq' to be \geq with the boxed elements from \leq cyclically permuted in \leq' . \leq'' is a T_0 complement of \leq .

Example 3.7. A Whyburn space with isolated points may also have a Whyburn complement, as seen in Figure 4. Indeed, this shows that for any $n \in \mathbb{N}$, there exists a Whyburn space of cardinality n which has a Whyburn complement.

$$\leq 1 2 3 4 5 6 \\ \leq 1 2 3 4 5 6 \\ = 1 2 3 4 5 6 7$$

FIGURE 4. Whyburn spaces with isolated points and Whyburn complements.

Some Whyburn spaces do not have Whyburn complements.

Theorem 3.8. (a) If (X, \leq) is a Whyburn space with $C = \emptyset$ and $|T| \geq |B| > 1$, then \leq has a Whyburn complement if and only if |B| = |T| and $K = \emptyset$.

VERONICA PIERRE AND TOM RICHMOND

(b) If (X, \leq) is a Whyburn space with $T = B = \emptyset$ and $4 \leq |C| \leq |K|$, then \leq has no Whyburn complement.

Proof. (a) If \leq' is a Whyburn complement of the Whyburn space (X, \leq) , the \leq' -component of $x \in T \cup K$ is either a 2-element cloud $\{x, b\}$ where $b \in B$ or an antichain of elements of B above x. Thus, each $x \in T \cup K$ contains at least one element of B in its \leq' -component, and distinct elements of $T \cup K$ cannot use the same element of B. Thus, $|T| \geq |B| \geq |T| + |K| \geq |T|$ and it follows that |B| = |T| and |K| = 0. Conversely, if (X, \leq) is a Whyburn space with |B| = |T| > 1 and $K = C = \emptyset$, Example 3.6 shows that \leq has a Whyburn complement.

(b) If \leq' is a Whyburn complement, the \leq' -component of $k \in K$ is either a 2-element cloud $\{k, c\}$ where $c \in C$ or an antichain of elements of C above k. Thus, each $k \in K$ contains at least one element of C in its \leq' -component, so $|C| \geq |K|$. The hypothesis that $|C| \leq |K|$ implies |C| = |K|. Then the \leq' -component of each $k \in K$ is either a chain k < c or a cloud $\{k, c\}$ for some $c \in C$. Pick a \leq -cloud $\{c, c^*\}$. The \leq' -components of c and c^* are either (a) chains $k <' c, k^* <' c^*$, (b) clouds $\{k, c\}, \{k^*, c^*\},$ or (c) one chain k <' c and one cloud $\{k^*, c^*\}$. In case (a) $\{c, c^*\} \in \tau \cap \tau'$; in case (b) $\{c, c^*, k, k^*\} \in \tau \cap \tau'$; in case (c) $\{c, c^*, k^*\} \in \tau \cap \tau'$. Since X has at least 8 elements, none of these sets in $\tau \cap \tau'$ is X, so \leq' is not a complement of \leq .

A complete characterization of Whyburn spaces which have Whyburn complements remains open.

Theorem 3.9. A Whyburn space without isolated points has a complement with height $h \leq 2$.

Proof. If (X, \leq) is a Whyburn space with $K = \emptyset$, relabel each cloud $\{c_i, c_i^*\} \subseteq C$ as $\{b_{c_i}, t_{c_i}\}$ and consider b_{c_i} and t_{c_i} to be elements of B and T respectively. Then, the proof of Theorem 3.3 provides a complement \leq' of height $h \leq 2$.

We note that if |B| < |T|, the complement provided by the proof of Theorem 3.9 is not a Whyburn complement.

References

- [1] Ben Amor Ahlem, Tom Richmond, Sami Lazaar, and Houssem Sabri, k-Primal spaces, Topology and itsApps., to appear, https://doi.org/10.1016/j.topol.2021.107907
- [2] A. Arhangel'skii and P. Collins, On submaximal spaces, Topology and its Apps. 64 (1995) no. 3, 219–241.

COMPLEMENTS OF TOPOLOGIES WITH SHORT SPECIALIZATION QUASIORDER ${\bf 9}$

- [3] G. Bezhanishvili, L. Esakia, D. Gabelaia, Some results on modal approximation and definability for topological spaces, Studia Logica 81 (2005) no. 3, 325–355.
- [4] Jason I. Brown and Stephen Watson, The number of complements of a topology on n points is at least 2ⁿ (except for some special cases). Discrete Math. 154 (1996), no. 1–3, 27–39.
- [5] J. Dontchev, On submaximal spaces, Tankang J. Math. 26 (1995), 243–250.
- [6] Marcel Erné and Kurt Stege, Counting finite posets and topologies, Order 8 (1991), 247–265.
- [7] Sami Lazaar, Houssem Sabri, and Randa Tahri, On some topological properties in the class of Alexandroff spaces, Turkish J. Math. 45 (2021) no. 1, 479–486.
- [8] Tom Richmond, General Topology: An Introduction. De Gruyter, 2020.
- [9] A. Błaszczyk and M. Tkachenko, Transversal and T₁-independent topologies and the Alexandroff duplicate, Topology and its Apps. 159 (2012), 75–87.
- [10] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10 (1958) 547-553.
- [11] E. Hewitt, A problem of set theoretic topology, Duke Math. J. 10 (1943) no. 2 309-333.
- [12] Jacob Menix and Tom Richmond, The lattice of functional Alexandroff topologies, Order 38 (2021), no. 1, 1–11.
- [13] A. Pultr and A. Tozzi, Equational closed subframes and representation of quotient spaces, Cahiers de Topologie et Géométrie Différnetielle Catégoriques 34 (1993), no. 3, 167–183.
- [14] V. Tkachuk and I. Yaschenko, Almost closed sets and the topologies they determine, Commentationes Mathematicae Universitatis Carolinae. 42 (2011), no. 2, 395–405.
- [15] A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc. 122 (1966), no. 2, 379–398.
- [16] Stephen Watson, The number of complements in the lattice of topologies on a fixed set, Topology Appl. 55 (1994), no. 2, 101–125.

(PIERRE AND RICHMOND) DEPARTMENT OF MATHEMATICS; WESTERN KENTUCKY UNIVERSITY; BOWLING GREEN, KY 42101

Email address: veronica.pierre342@topper.wku.edu Email address: tom.richmond@wku.edu