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COMPLEMENTS OF TOPOLOGIES WITH SHORT
SPECIALIZATION QUASIORDERS

VERONICA PIERRE AND TOM RICHMOND

Abstract. By identifying a topology τ on a finite set X with its
specialization quasiorder ≤, we investigate the complements of τ
in the lattice of topologies on X in cases where the heights of the
specialization posets are small.

Dedicated to Ralph Kopperman, a pioneer in asymmetric topology.

1. Introduction

If τ is a topology on a finite set X, associating the specialization qua-
siorder defined by x ≤ y if and only if x ∈ cl{y} gives a one-to-one corre-
spondence between the topologies and quasiorders on X. We interchange-
ably denote a topology τ by its specialization quasiorder ≤. Thus, the
smallest neighborhood N(x) of x corresponds to ↑ x = {y ∈ X : x ≤ y},
and we will use N(x) and ↑ x interchangeably. A quasiorder ≤ on X gives
an equivalence relation ≈ defined by x ≈ y if and only if x ≤ y and y ≤ x,
and gives a partial order on the ≈-equivalence classes defined [x] ≤′ [y]
if and only if x ≤ y. To draw the Hasse diagram for a quasiorder, we
draw the Hasse diagram for the related partial order ≤′ and represent
each point [x] ∈ X/≈ by the set of points of X which make up [x]. In
this context, we will call the set of points of [x] a cloud. A quasiorder ≤
is a partial order if and only if each cloud is a singleton, or equivalently,
if τ is T0. A quasiorder ≤ is a total order if and only if τ is an irreducible
T0, T5 topological space (see [6]) or equivalently, if τ is T0 and is a nested
collection of open sets. The height of a quasiordered set (X,≤) is the
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maximum number of distinct points in a chain in (X,≤). In the lattice of
topologies on X, τ ′ is a complement of τ if τ ∨ τ ′ = τD and τ ∧ τ ′ = τI ,
where τD is the discrete topology on X and τI is the indiscrete topol-
ogy. For finite sets, τ ∨ τ ′ = τD if and only if ↑ x∩ ↑′ x = {x} (that is,
N(x) ∩N ′(x) = {x}) for all x ∈ X. If ≤ is a connected partial order on
X (that is, the Hasse diagram for ≤ is a connected graph), then ≥ is a
complement to ≤. In 1958, Hartmanis proved that every topology on a
finite set has a complement, and in 1966 Anne Steiner proved that every
Alexandroff topology has an Alexandroff complement. See [10, 15, 8].
Further results on complementation in lattices of topologies are given
in [1, 4, 12, 16].

2. Totally Ordered Results

Theorem 2.1. If τ is a topology on X whose quasiorder ≤ is a partial
order of height 2 or 3, then τ admits a complement τ ′ whose quasiorder
≤′ is a total order.

Proof. Let K = {x ∈ X : x ‖ y ∀y 6= x}, T = {x ∈ X : x is maximal in
X −K}, M = {m ∈ X : b < m < t for some b, t ∈ X}, and B = {x : x is
minimal inX−K}. If the height of ≤ is 2, thenM = ∅. Note thatM is an
antichain, for otherwise the height of X would be greater than 3. Also, B
is clearly seen to be an antichain. Put total orders on the sets T,M∪K,B,
and then form the total order ≤′ on X by taking T <′ (M ∪ K) <′ B.
We will show that ≤′ is a complement of ≤.

For x ∈ T ∪ K, ↑ x = {x}, so ↑ x∩ ↑′ x = {x}. For m ∈ M , ↑ m ⊆
{m} ∪ T and ↑′ m ⊆ M ∪ K ∪ B, so ↑ m∩ ↑′ m = {m}. For b ∈ B,
↑ b ⊆ {b} ∪M ∪ T and ↑′ b ⊆ B, so ↑ b∩ ↑′ b = {b}. Thus, τ ∨ τ ′ = τD.

Suppose U ∈ τ ∩ τ ′ and x ∈ U . If x ∈ T , M ∪ K ∪ B ⊆ ↑′ x and
X = ↑ (M ∪K ∪B) ⊆↑↑′ x ⊆ U , so U = X. If x ∈M ∪K ∪B, then ↑′ x
contains some b ∈ B, ↑ b contains some t ∈ T , ↑′ t contains M ∪K ∪ B,
and ↑ (M ∪K ∪B) = X. Thus, the only nonempty set open in τ and τ ′
is X. �

Suppose τ is a topology on X whose quasiorder ≤ is a partial order of
height 2 or 3. With the notation of the proof above, if t = |T |,m = |M ∪
K|, and b = |B|, the arbitrary choice of the total orders on T,M ∪K, and
B show that τ admits at least t!m!b! complements τ ′ with total quasiorder
≤′.

The next theorem shows that the condition in Theorem 2.1 that the
quasiorder ≤ is a partial order is necessary.

Theorem 2.2. If (X,≤) is a quasiorder which is not a partial order, then
it has no totally ordered complement.
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Proof. Under the hypotheses, there exists a 6= b with a ≤ b, b ≤ a. If ≤′
is a complement in which a and b are related, without loss of generality
assume a ≤′ b. Now {a, b} ⊆↑ {a}∩ ↑′ {a}, so ↑ a∩ ↑′ a 6= {a}. �

Theorem 2.3. If τ 6= τD is a topology on a finite set X, then τ has a T0
complement τ ′ whose specialization quasiorder is a partial order of height
h ≤ 3.

Proof. Let T = {x ∈ X : [x] is maximal in X/≈} where a ≈ b if and only
if a ≤ b and b ≤ a, [x] is the ≈-equivalence class of x, and the quotient
space X/≈ is the T0-reflection of (X,≤). Let B = {x ∈ X : [x] is minimal
in X/≈}, andM = X−(T ∪B). Make T,M, and B antichains in ≤′, with
T <′ M <′ B. Thus, t <′ m <′ b for all b ∈ B,m ∈ M, t ∈ T and x ≤′ x
for all x ∈ X. Now ≤′ has height less than three and is a complement of
≤. �

Note that this result gives a converse to Theorem 2.1: If ≤ is a total
order on X, then ≤ has a T0 complement whose quasiorder is a partial
order of height h ≤ 3. We can improve on this.

Theorem 2.4. If ≤ is a total order on X and |X| > 1, then ≤ has a T0
complement ≤′ where ≤′ is a partial order of height 2.

Proof. If the order on X is 1 < 2 < · · · < n, let A = {1, 2, . . . , n − 1}.
Define ≤′ by making A an antichain and putting n <′ A. Now ≤′ is a
complement of ≤ with height 2. �

3. Submaximal, Door, and Whyburn Spaces

A topological space X is submaximal if every dense subset is open, is
a door space if every set is either open or closed, and is Whyburn if for
every non-closed A ⊆ X and every x ∈ clA − A, there exists B ⊆ A
with clB − B = {x}. Submaximal spaces were investigated in [2, 3, 5].
Edwin Hewitt [11] used the term “MI space” for submaximal spaces with
no isolated points; Theorem 3.3 below concerns such spaces. Whyburn
spaces ([13]) are called AP -spaces in [14]. Further references on these
spaces can be found in [7], where the following results are given.

Theorem 3.1 (Lazaar, Sabri, Tahri). Suppose τ is a topology on a finite
set with specialization quasiorder ≤. Let h be the height of ≤.

(1) τ is submaximal if and only if ≤ is a partial order and h ≤ 2.
(2) τ is a door space if and only if h ≤ 2 and all chains of length 2

share a common point, which is necessarily a maximal or minimal
point.

(3) τ is Whyburn if and only if | ↓ x| ≤ 2 for all x ∈ X.
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We note that the condition to be a door space implies that the qua-
siorder ≤ is a partial order. Furthermore, (X, τ) is a door space⇒ (X, τ)
is submaximal, and T0 + Whyburn ⇒ submaximal.

If (X,≤) is submaximal, we take X = T ∪ B ∪ K where T = {t ∈
X : b < t for some b ∈ X}, B = {b ∈ X : b < t for some t ∈ X}, and
K = X − (T ∪B).

Theorem 3.2. Suppose (X,≤) is submaximal and not discrete. If ≤′ is
a complement of ≤, then

(a) every minimal ≤′-cloud contains some t ∈ T and no points b < t,
and

(b) every maximal ≤′-cloud contains an element of B.

Proof. First note that any set A ⊆ X with T ⊆ A is ≤-increasing. If C is a
minimal ≤′-cloud which is disjoint from T , then we have the contradiction
that C 6∈ {∅, X} andX−C is ≤-increasing and ≤′-increasing. Thus, every
minimal ≤′-cloud C contains some t ∈ T . If C also contains b < t, then we
have the contradiction t ∈↑b∩ ↑′ b = {b}. This proves (a). Suppose there
is a maximal ≤′-cloud D 6= ∅ containing no point of B. Then D ∈ τ ∩ τ ′.
If D = X, for any b < t we have the contradiction t ∈↑ b∩ ↑′ b. Thus,
X 6= D ∈ τ ∩ τ ′, contrary to ≤′ being a complement of ≤. This proves
(b). �

A submaximal space X = T ∪B ∪K has many complements. For one,
make T and B antichains in ≤′ and put t <′ k1 ≤′ k2 <′ b for every t ∈ T ,
k1, k2 ∈ K, and b ∈ B. For another, take t1 ≤′ t2 <′ k1 ≤′ k2 <′ b1 ≤′ b2
for all ti ∈ T , ki ∈ K, and bi ∈ B. This quasiorder has three clouds,
T <′ K <′ B. For a third complement, consider clouds T and K∪B with
T <′ K ∪ B. Note that, except in the simplest cases, the complements
described here involve clouds with more than one point (so, they are not
T0-complements), and have height h > 2 (so they are not submaximal
complements).

Theorem 3.3. Suppose (X,≤) is submaximal and not discrete. Then ≤
has a submaximal complement if and only if it has no isolated points.

Proof. Suppose ≤ and ≤′ are complements and each is submaximal. All
the clouds in ≤ are singletons, so Theorem 3.2 implies that every ≤-
minimal point is an element of T and every ≤-maximal element is an
element of B. Any isolated point would thus be in T ∩B, a contradiction.
Thus, ≤ (and similarly ≤′) can have no isolated points.

Suppose (X,≤) has no isolated points, so K = ∅ and X is partitioned
into T ∪B. Let C1, . . . , Cn be the connected components of the graph of
≤ and for each Cj , pick bj ∈ B∩Cj . Let ≤′ be the partial order ≥, except
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that the points b1, b2, . . . , bn are permuted to b2, . . . , bn, b1, as suggested
in Figure 1. Formally,

x ≤′ y ⇐⇒


y = bj and x = bj (j = 1, . . . , n)
y = bj and x > bj−1 (j = 2, . . . , n)
y = b1 and x > bn

y 6∈ {b1, . . . , bn} and x ≥ y.

Now every point x ∈ Cj−{bj} is connected by a≤ ∪ ≥ path in Cj−{bj}
to a point t ≥ bj , and such a path is also a ≤ ∪ ≤′ path. Now suppose
t1 > b1, so t1 ∈ C1−{b1}. Now t1 <

′ b2 < t2 for some t2 ∈ C2−{b2}. We
have t2 <′ b3 < t3 for some t3 ∈ C3 − {b3}. Continuing in this manner,
we find a ≤ ∪ ≤′ path from t1 to b2, . . . , b3, . . . , b1 < t1. With a shift of
indices, we can similarly find a ≤ ∪ ≤′ path from any tj > bj through
all the points bj+1, . . . , bn, b1, . . . , bj and back to tj . Since every point
x ∈ Cj−{bj} is connected to a point tj > bj it is connected to every point
of

⋃n
j=1 Cj − {bj} by a path which contains all the points b1, b2, . . . , bn.

Thus, X is ≤ ∪ ≤′ connected, and it follows that τ ∩ τ ′ = {∅, X}.
From the construction, every point of X is maximal in ≤ or in ≤′, so

either ↑ x = {x} or ↑′ x = {x}. Thus, ≤′ is a complement of ≤. Clearly
≤′ is a partial order with height 2, so ≤′ is submaximal. �

Figure 1. To obtain a complement of ≤, take ≤′ to be
≥ with the boxed elements from ≤ cyclically permuted
in ≤′.

Since door spaces are submaximal, the necessary conditions from The-
orem 3.2 for complements of submaximal spaces apply to door spaces.
Indeed, those conditions are also sufficient for door spaces.

Theorem 3.4. Suppose (X,≤) is a door space, the point t common to
all chains of length 2 is maximal, and B = {b ∈ X : b < t}. Then ≤′ is a
complement of ≤ if and only if
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(a) there is a minimum ≤′-cloud and it contains t and no points of
B, and

(b) every maximal ≤′-cloud contains an element of B.

Proof. Suppose ≤′ is a complement of ≤. By Theorem 3.2, every minimal
≤′-cloud contains t, since T = {t} for a door space. Thus, every minimal
cloud is the cloud containing t, so there is a minimum ≤′-cloud. Thus,
(a) and (b) follow from Theorem 3.2.

Now suppose (a) and (b) hold. Suppose U ∈ τ ∩ τ ′ and x ∈ U . By
(b), ↑′ x contains a point b ∈ B, so ↑↑′ x contains t, and ↑′↑↑′ x contains
X = ↑ t. Thus, τ ∩ τ ′ = {∅, X}. If x ∈ X − B, ↑ x = {x}. If x ∈ B,
by (a), t 6∈ ↑′ x, and since ↑ x = {x, t}, ↑ x ∩ ↑′ x = {x}. Thus, ≤′ is a
complement of ≤. �

Corollary 3.5. Suppose (X,≤) is a door space with n elements, the point
t common to all chains of length 2 is maximal, B = {b ∈ X : b < t}, and
|B| = k. Then ≤ admits exactly k(n−2)! totally ordered complements and
at least k · T (n− 2) complements, where T (j) is the number of topologies
on j points.

Proof. The totally ordered complements of ≤ have form t <′ x1 <
′ x2 <

′

· · · <′ xn−2 <′ b where b is one of the k elements of B and x1 <′ · · · <′ xn
is one of the (n − 2)! total orders on X − {b, t}. If b ∈ B and Q is any
quasiorder on X−{t, b}, then t <′ Q <′ b gives a complement of ≤. There
are k choices for b and T (n− 2) choices for Q. �

If (X,≤) is a Whyburn space, let C = {x ∈ X : x < y < x for some
y ∈ X}, T = {t ∈ X−C : x < t for some x ∈ X}, B = {b ∈ X−C : b < x
for some x ∈ X}, and K = X − (T ∪B ∪ C), as suggested in Figure 2.

Figure 2. A generic Whyburn space.

Some Whyburn spaces have Whyburn complements.

Example 3.6. Suppose a finite Whyburn space (X,≤) has K = ∅ and
|T | = |B|. (Thus, X has no isolated points and | ↑ x| ≤ 2 and | ↓ x| ≤ 2
for every x ∈ X.) As suggested in Figure 3, inverting the order ≤ and
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cyclically moving each element of B ∪ C one place to the right gives a
complement ≤′. Replacing each cloud {2k, 2k + 1} in ≤′ by the segment
2k + 1 ≤′′ 2k gives a T0 complement ≤′′.

Figure 3. To obtain a complement of ≤, take ≤′ to be
≥ with the boxed elements from ≤ cyclically permuted
in ≤′. ≤′′ is a T0 complement of ≤.

Example 3.7. A Whyburn space with isolated points may also have a
Whyburn complement, as seen in Figure 4. Indeed, this shows that for
any n ∈ N, there exists a Whyburn space of cardinality n which has a
Whyburn complement.

Figure 4. Whyburn spaces with isolated points and
Whyburn complements.

Some Whyburn spaces do not have Whyburn complements.

Theorem 3.8. (a) If (X,≤) is a Whyburn space with C = ∅ and
|T | ≥ |B| > 1, then ≤ has a Whyburn complement if and only if
|B| = |T | and K = ∅.
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(b) If (X,≤) is a Whyburn space with T = B = ∅ and 4 ≤ |C| ≤ |K|,
then ≤ has no Whyburn complement.

Proof. (a) If ≤′ is a Whyburn complement of the Whyburn space (X,≤),
the ≤′-component of x ∈ T∪K is either a 2-element cloud {x, b} where b ∈
B or an antichain of elements of B above x. Thus, each x ∈ T∪K contains
at least one element of B in its ≤′-component, and distinct elements of
T∪K cannot use the same element of B. Thus, |T | ≥ |B| ≥ |T |+|K| ≥ |T |
and it follows that |B| = |T | and |K| = 0. Conversely, if (X,≤) is a
Whyburn space with |B| = |T | > 1 and K = C = ∅, Example 3.6 shows
that ≤ has a Whyburn complement.

(b) If ≤′ is a Whyburn complement, the ≤′-component of k ∈ K is
either a 2-element cloud {k, c} where c ∈ C or an antichain of elements
of C above k. Thus, each k ∈ K contains at least one element of C in
its ≤′-component, so |C| ≥ |K|. The hypothesis that |C| ≤ |K| implies
|C| = |K|. Then the ≤′-component of each k ∈ K is either a chain
k < c or a cloud {k, c} for some c ∈ C. Pick a ≤-cloud {c, c∗}. The
≤′-components of c and c∗ are either (a) chains k <′ c, k∗ <′ c∗, (b)
clouds {k, c}, {k∗, c∗}, or (c) one chain k <′ c and one cloud {k∗, c∗}. In
case (a) {c, c∗} ∈ τ ∩ τ ′; in case (b) {c, c∗, k, k∗} ∈ τ ∩ τ ′; in case (c)
{c, c∗, k∗} ∈ τ ∩ τ ′. Since X has at least 8 elements, none of these sets in
τ ∩ τ ′ is X, so ≤′ is not a complement of ≤. �

A complete characterization of Whyburn spaces which have Whyburn
complements remains open.

Theorem 3.9. A Whyburn space without isolated points has a comple-
ment with height h ≤ 2.

Proof. If (X,≤) is a Whyburn space with K = ∅, relabel each cloud
{ci, c∗i } ⊆ C as {bci , tci} and consider bci and tci to be elements of B and
T respectively. Then, the proof of Theorem 3.3 provides a complement
≤′ of height h ≤ 2. �

We note that if |B| < |T |, the complement provided by the proof of
Theorem 3.9 is not a Whyburn complement.
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