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abstract A topological space is called resolvable if it is a union of two
disjoint dense subsets, and is n-resolvable if it is a union of n mutually
disjoint dense subsets. Clearly a resolvable space has no isolated points. If
f is a selfmap on X, the sets A ⊆ X with f(A) ⊆ A are the closed sets of
an Alexandroff topology called the primal topology P(f) associated with f .
We investigate resolvability for primal spaces (X,P(f)). Our main result
is that an Alexandroff space is resolvable if and only if it has no isolated
points. Moreover, n-resolvability and other related concepts are investigated
for primal spaces.
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Introduction. A topological space is called an Alexandroff space if arbitrary
nonempty intersections of open sets are open. P. Alexandroff [1] introduced these
spaces in 1937, with the name of Diskrete Räume. In 1966, A. K. Steiner [20] called
these spaces principal spaces. Alexandroff spaces play an important role in several
areas including digital topology and computer science.

In 1998, Richmond [18] studied the Alexandroff topologies on a set X with par-
ticular attention to their lattice structure by considering them as partially ordered
partitions. Uzcátegui and Vielma [23] gave interesting results about Alexandroff
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spaces from a different perspective by viewing them as closed sets of the Cantor
cube 2X .

An important property of Alexandroff spaces is that the closure of the union of
a family of subsets in such a space is the union of the closures of these subsets. In
particular, if X is an Alexandroff space and A a subset of X, then A =

⋃
{{x} :

x ∈ A}.
For a set X and a selfmap f : X −→ X, we obtain an Alexandroff topology P(f)

on X by taking the closed sets to be the subsets A which are f -invariant, (i.e, the
subsets A with f(A) ⊆ A). This concept was introduced independently by Shirazi
and Golestani [2] in 2011 and Echi [9] in 2012. Shirazi and Golestani called such
spaces functional Alexandroff spaces, and Echi called them primal spaces. We will
follow Echi’s terminology.

In 1943, Hewitt [13] defined resolvable spaces to be those topological spaces X
having two complementary subsets, each of which is dense in X. Equivalently, X
is resolvable if and only if X contains two disjoint dense subsets. Hewitt presented
several classes of topological spaces which are resolvable.

After Hewitt, in 1964, J. G. Ceder [6] considered the following question: how
many pairwise disjoint dense subsets may a topological space X contain? Ceder
generalized W. Sierpinski’s 1949 result [19] that if X is a metric space with the
property that each nonempty open set U has |U | ≥ m ≥ ℵ0, then X contains m
pairwise disjoint subsets each intersecting every open set in at leastm points. Ceder
also introduced the notions of maximally resolvable spaces and n-resolvable spaces.
The related concepts of exactly n-resolvable spaces and strongly exactly n-resolvable
spaces, discussed in Section 4 below, were introduced later (see [4, 5, 11]).

From [9] and [12], it is known that a topological space is primal if and only
if its T0-reflection is a primal space. In Section 1, for a given primal space
(X,P(f)), we give an explicit construction (up to homeomorphism) of the T0-
reflection T0(X,P(f)) as a primal space (Y,P(g)), where Y is a subset of X and
g : Y −→ Y is a selfmap defined in terms of f .

In Section 2, we investigate resolvability of Alexandroff spaces. Based on a
result of A. H. Stone [21], we characterize the n-resolvable Alexandroff spaces. The
proof of the needed result from [21] is lengthy and complicated. In the class of
primal spaces, we characterize n-resolvable spaces and provide elementary, direct
proofs. With n = 2, the definition of n-resolvable reduces to that of resolvable. In
particular, we show that an Alexandroff space is resolvable if and only if it has no
isolated points.

In Section 3, primal spaces whose T0-reflection are resolvable, that is, the T0-
resolvable primal spaces, are characterized.

In the final section, exactly n-resolvable spaces and strongly exactly n-resolvable
spaces are characterized in the class of primal spaces.

The set of integers is denoted by Z. We use N to denote the set {0, 1, 2, 3, . . .},
and we take N∗ = N\{0} and Z∗ = Z\{0}.

1. The T0-reflection of a primal space. Let C be a category. Following
Kennison [15], a flow in C is a couple (X, f) where X is an object of C and f
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is a morphism from X to itself. Now, let (X, f) be a flow in the category Set
of sets. O. Echi has defined the associated primal topology P(f) on X, whose
closed sets are exactly those sets A which are f -invariant (that is, the sets with
f(A) ⊆ A). A primal space is a topological space (X, τ) such that there is some
mapping f : X → X with τ = P(f).

Clearly P(f) is an Alexandroff topology on X. Given a subset A of X, the
closure of A in (X,P(f)) will be denoted AX . It is easily seen that AX is exactly⋃
{fn(A) : n ∈ N} and in particular for any point x ∈ X, {x} = {fn(x) : n ∈ N}.

That is, the closure of a point x is the orbit of x by f , denoted Of (x). Recall that
by convention, f0(x) = x.

The smallest open set containing x is

Vf (x) = {y ∈ X : fn(y) = x for some n ∈ N},

and the family B = {Vf (x) : x ∈ X} is a basis for the open sets of P(f).
The construction of theT0-reflectionT0(X) of a topological spaceX, defined be-

low, is well-known. In this section, we give an explicit construction of T0(X,P(f))
for a primal space (X,P(f)) and show that T0(X,P(f)) is homeomorphic to a
primal space (Y,P(g)), where Y and g are derived from X and f . The properties
of this construction will be used later. This construction defines T0(X,P(f)) as a
subset Y of X and g as a restriction of f with minor identifications. All periodic
points of X become fixed points of g.

Recall that a reflective subcategory A of B is a full subcategory such that the
embedding functor A −→ B has a left adjoint functor. This means that for each
object X of B, there exist an object F(X) of A (called the A-reflection of X) and
a morphism µX : X −→ F(X) in B such that for each object Y in A and each
morphism f : X −→ Y in B, there exists a unique morphism f̃ : F(X) −→ Y in
A such that f̃ ◦ µX = f (for more information see [17, page 89]).
Further, recall that for all i = 0, 1, 2, 3, 31

2 , the subcategory Topi of Ti-spaces is
reflective in the category Top of all topological spaces.

Now, we recall the particular case of the T0-reflection of a topological space X.
Define an equivalence relation on X by

x ∼ y if and only if {x} = {y}.
The resulting quotient space X/∼ is the T0-reflection T0(X) of X. In particular,

T0(X) is a T0-space with the following properties:
• The canonical onto map µX : X −→ T0(X) is a quasihomeomorphism; that
is, µ−1

X provides a bijection between the open sets of T0(X) and those of
X (see [12, 22]).
• For any T0-space Y and any continuous map f from X to Y , there exists
a unique map f̃ which makes the following diagram commute.

X
`

µX // T0(X)

f̃||
Y
��f
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Because µX : X −→ T0(X) is a quasihomeomorphism, it follows that X is an
Alexandroff space if and only if T0(X) is an Alexandroff space.

Before giving the main result of this section, let us introduce some definitions,
notations, and remarks.

Definition 1.1. Let (X, f) be a flow in Set and x ∈ X. Then x is said to be
a periodic point of f if fn(x) = x for some n ∈ N∗. In this case, p := min{n ∈
N∗; fn(x) = x} is called the period of x, and x is said to be a p-periodic point of
f . The set of all periodic points of X will be denoted by Per(f). In particular, a
1-periodic point of f is called a fixed point of f and the set of all fixed points of f
will be denoted by Fix(f).

Graphical conventions. In our graphical depictions of primal spaces, generally
we will represent f(a) as the vertex above a. There are special cases, such as those
shown in Figure 1, which do not follow this general rule. We will represent cycles
in the counterclockwise direction. Figure 1(a) represents a cycle with f(ai) = ai+1,
for 1 ≤ i ≤ n − 1 and f(an) = a1. Figure 1(b) represents a cycle of length two,
with f(a) = b and f(b) = a. Figure 1(c) represents a fixed point a. Sometimes it
will be convenient to represent f(a) as the vertex to the right of a. Figure 1(d)
represents points a, b, c with f(a) = b, f(b) = c and f(c) = c.

ra5 = f(a4)

r
a1 = f(a5)

ra4 = f(a3)

ra2 = f(a1)

ra3 = f(a2)
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Figure 1.

Let (X, f) be a flow in Set and equip X with the topology P(f). Under the
equivalence relation ∼ defined by x ∼ y if and only if {x} = {y}, the equivalence
class of any non-periodic point is a singleton. Let Λ be a complete set of equivalence
class representatives from Per(f), so {{a} : a ∈ Λ} is a partition of Per(f).

Let Y = (X\Per(f))tΛ be the disjoint union of Λ and the non-periodic points
of f . We define the map g : Y −→ Y as follows:

(g1) If y ∈ Λ, then g(y) := y.

(g2) If y ∈ X\Per(f) and {f(y)}X = {a}X for some a ∈ Λ, then g(y) := a, that
is, if y ∈ X\Per(f) and f(y) ∈ Per(f) then g(y) = a ∈ Λ where a ∼ f(y).
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(g3) If y ∈ X\Per(f) and {f(y)}X 6= {a}X for each a ∈ Λ, then g(y) := f(y),
that is, if y ∈ X\Per(f) and f(y) ∈ X\Per(f) then g(y) = f(y).

This construction collapses cycles to points, as suggested by Figure 2. Our goal is
Theorem 1.10 in which we will show that (Y,P(g)) is the T0-reflection of (X,P(f)).
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Figure 2. Cycles in (X,P(f)) collapse to points in (Y,P(g)).

Lemma 1.2. Let x ∈ Y = (X\Per(f)) t Λ. Then
(1) If f(x) ∈ Y , then g(x) = f(x).
(2) If f(x) /∈ Y , then g(x) = a with a ∈ Λ satisfying {f(x)}X = {a}X .

Proof. Let x be in Y .
(1) If f(x) belongs to Y , then two cases arise:

- f(x) is not a periodic point and then, on the one hand x is not periodic
too and on the other hand {f(x)}X 6= {a}X for each a ∈ Λ. Hence, by the
construction of g, g(x) = f(x).
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- f(x) ∈ Λ and since x is in Λ too, then x is a fixed point which implies
that x = f(x) = g(x).

(2) If f(x) is not in Y , then f(x) is a periodic point not in Λ and in this case
there exists a ∈ Λ such that {f(x)}X = {a}X . Hence by the construction
of g, we have g(x) = a.

�

Lemma 1.3. For each x ∈ Y , we have {x}Y ⊆ {x}X and Vg(x) ⊆ Vf (x).

Proof. First, we prove the result about closures. Suppose x ∈ Y is given. From
the definition of g and Lemma 1.2, observe that g(x) is either x, f(x), or a, where
{a}X = {f(x)}X , so a = fn(f(x)) for some n ∈ N. In all cases, g(x) ∈ {x}X =

Of (x). Repeating this argument with x replaced by g(x) shows g(g(x)) ∈ {x}X .
Iterating inductively, it follows that Og(x) = {x}Y ⊆ {x}X .

Now we will show that Vg(x) ⊆ Vf (x) for every x ∈ Y . Indeed, for y ∈ Vg(x),
there exists n ∈ N such that x = gn(y), which implies that x ∈ {y}Y ⊆ {y}X .
Hence, x = fm(y) with m ∈ N, and thus y ∈ Vf (x). �

Lemma 1.4. For x ∈ Y , x is a periodic point of g if and only if x is a fixed point
of g. That is,

Per(g) = Fix(g).

Proof. For y ∈ Y = (X\Per(f)) t Λ, consider the three cases (g1), (g2), and (g3)
defining g(y). In case (g1), y is a fixed point of g. In case (g2), y 6∈ Λ and g(y) ∈ Λ.
Since every point of Λ is a fixed point, gn(y) = g(y) ∈ Λ can never equal y 6∈ Λ. In
case (g3), iteratively applying g, either gn(y) ∈ Λ for some n ∈ N and consequently
gn+m(y) ∈ Λ for every m ∈ N, in which case the orbit of y with respect to g stays
in Λ and cannot return to y, or gn(y) = fn(y) ∈ X\Per(f) for all n ∈ N, in which
case y is neither periodic with respect to f nor g. Thus, the only periodic points
of g are the fixed points y ∈ Λ. �

Proposition 1.5. (Y,P(g)) is a T0-space.

Proof. By Proposition 2.5 of [9], it suffices to prove that Per(g) = Fix(g), and this
was shown in Lemma 1.4. �

With X and Y as above, we define the map θX : X −→ Y by θX(x) = x if
x ∈ Y , and θX(x) = a if x ∈ X \ Y = Per(f) \ Λ with {x}X = {a}X for some
a ∈ Λ. From the definition, θX is clearly a surjective map.

Then, we have the following result.

Proposition 1.6. θX : (X,P(f)) −→ (Y,P(g)) is a closed continuous map.
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Proof. We know that θX is a closed continuous map if and only if θX(A
X

) =

θX(A)
Y

for every subset A of X. Now, since (X,P(f)) and (Y,P(g)) are Alexan-
droff spaces, it suffices to show that θX({x}X) = {θX(x)}Y for every x ∈ X. For
this, suppose x ∈ X.

If x ∈ Per(f) \ Λ, then θX(x) = a with {x}X = {a}X for some a ∈ Λ. Hence
{θX(x)}Y = {a}Y = {a}. And on the other hand, we have

θX({x}X) = θX({a}X)
= θX({fn(a); 0 ≤ n ≤ r − 1}) where r is the period of a
= {θX(a)} ∪ {θX(fn(a)); 1 ≤ n ≤ r − 1}.

For a ∈ Λ ⊆ Y , we have θX(a) = a. Furthermore, for each 1 ≤ n ≤ r − 1 we have
fn(a) ∈ Per(f)\Λ and {fn(a)}X = {a}X , so θX(fn(a)) = a for each 1 ≤ n ≤ r−1.
Therefore θX({x}X) = {a} = {θX(x)}Y .

Now, if x ∈ Y then two cases arise.

Case 1: If fn(x) ∈ Y for each n ∈ N, then we have

θX({x}X) = {θX(fn(x));n ∈ N}
= {fn(x);n ∈ N}
= {gn(x);n ∈ N} (by Lemma 1.2(1))

= {x}Y

= {θX(x)}Y .

Case 2: If there exists n0 ∈ N such that fn(x) ∈ Y for each n ≤ n0 and fn0+1(x) ∈
Per(f) \ Λ with {fn0+1(x)}X = {a}X for some a ∈ Λ. Then

θX({x}X) = {θX(x), θX(f(x)), · · · , θX(fn0(x))} ∪ θX({a}X)

= {x, f(x), · · · , fn0(x)} ∪ {a}
= {x, g(x), · · · , gn0(x)} ∪ {a} (by Lemma 1.2(1))

= {x, g(x), · · · , gn0(x)} ∪ {gn0+1(x)}Y

= {x}Y

= {θX(x)}Y .

�

Proposition 1.7. Let U be a subset of Y . Then U is open in (Y,P(g)) if and only
if θ−1

X (U) is open in (X,P(f)).

Proof. If U is open in (Y,P(g)), then θ−1
X (U) is open in (X,P(f)) by Proposi-

tion 1.6.
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Conversely, let U be a subset of Y such that θ−1
X (U) is open in (X,P(f)). By

Lemma 1.3, for each x ∈ Y , Vg(x) ⊆ Vf (x). Now, let x ∈ U ⊆ Y then θX(x) = x.
Hence, x ∈ θ−1

X (U). Since θ−1
X (U) is open in X, then Vf (x) ⊆ θ−1

X (U) which implies
that Vg(x) ⊆ θ−1

X (U). Thus Vg(x) = θX(Vg(x)) ⊆ θX(θ−1
X (U)) = U . Therefore, U

is open in Y . �

Since θX is a surjection, Proposition 1.7 shows that θX is a quotient map, giving
the following result.

Corollary 1.8. (Y,P(g)) is a quotient space of (X,P(f)).

Proposition 1.7 involves subspaces of a primal space. Below, we will use the
fundamental fact that a subspace of a primal space is primal. Specifically, Echi [9,
Examples 2.7(6)] showed that if Y is a subset of a primal space (X,P(f)), the
subspace topology on Y is P(h) for the map h : Y −→ Y defined as follows: Let
y ∈ Y . If Sy := {n ∈ N∗ : fn(y) ∈ Y } = ∅, then we set h(y) := y. If Sy 6= ∅, then
we define h(y) := fp(y), where p is the least element of the set Sy. It follows that
the smallest open subset of Y containing y is of the form U ∩Y where U is an open
subset of X, so Vh(y) = Vf (y) ∩ Y .

Proposition 1.9. Let (X, f) be a flow in Set, Z be a T0-space, and h be a con-
tinuous map from the primal space (X,P(f)) to Z. Then, there exists a unique
continuous map h̃ from (Y,P(g)) to Z such that h̃ ◦ θX = h.

Proof. For any x ∈ X, let us prove that h̃(θX(x)) = h(x) defines h̃ as a continuous
map from (Y,P(g)) to Z. Hence, it is sufficient to show that for any x, a ∈ X
such that θX(x) = θX(a), we have h(x) = h(a). In this situation, we only need to
consider the case of x ∈ Per(f) \ Λ and a ∈ Λ such that {x}X = {a}X .

Indeed, let U be an open set of Z containing h(a). Since h is continuous, then
h−1(U) is an open set in X that contains a. Thus, {x}X = {a}X implies that
x ∈ h−1(U) and so h(x) ∈ U .
We conclude that {h(a)}Z = {h(x)}Z . Since Z is T0, we have h(a) = h(x). �

Now, we are in a position to give the main result of this section.

Theorem 1.10. (Y,P(g)) is homeomorphic to T0(X,P(f)).

Proof. Using Proposition 1.9 and the characterization given by MacLane in [17,
page 89] one can easily see that (Y,P(g)) is homeomorphic to T0(X,P(f)). �

The following example illustrates Theorem 1.10. Note that it includes points
which illustrate each of the three defining conditions (g1), (g2), and (g3) of the
function g.
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Example 1.11. Let (X,P(f)) be a primal space with X = Z2 and f : Z2 → Z2

defined by:

f(n,m) =



(n,m+ 1) if m < 0
(n,−1) if m = 0

(n+ 1, 1) if (n,m) ∈ 2Z× {1}
(n, 2) if (n,m) ∈ 2Z + 1× {1}

(n− 1, 2) if (n,m) ∈ 2Z + 1× {2}
(n, 1) if (n,m) ∈ 2Z× {2}

(n+ 1,m) if m > 2.

This function is suggested by the left sketch of Figure 3.
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Figure 3.

In this case, we can choose Y = (Z×Z∗−)∪ (2Z×{1})∪ (Z×{3, 4, 5, ....}), where
Z∗− = {−1,−2,−3, . . .}. Now g : Y → Y is given by:

g(n,m) =


(n,m+ 1) if m < −2 by (g3)
(n,m+ 1) if m = −2 by (g2)

(n,m) if m = −1 by (g1)
(n,m) if (n,m) ∈ 2Z× {1} by (g1)

(n+ 1,m) if m > 2 by (g3).

This function is suggested by the right sketch of Figure 3.
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In this case, the map θX is defined as follow:

θX : (X,P(f)) −→ (Y,P(g))

θX(n,m) =


(n,m) if (n,m) ∈ Y
(n,−1) if m = 0

(n, 1) if (n,m) ∈ 2Z× {1, 2}
(n− 1, 1) if (n,m) ∈ 2Z + 1× {1, 2}

Looking at the previous example, it is easy to see that the choice of Y is not
unique. The following remark gives the number of possibilities of (Y,P(g)) when
(X,P(f)) is fixed.

Remark 1.12. Recall that Y = (X\Per(f)) t Λ ⊆ X, where Λ contains one
representative from each equivalence class in Per(f). Since there are many ways
to choose the representatives, there are many possibilities for the choice of Y ⊆ X.
If α denotes the number of possibilities of Y , then

α =
∏
x∈Λ

p(x) =
∏

x∈Λ\Fix(f)

p(x),

where p(x) designates the period of x, and a product over an empty index set is 1.

In the example below, we find the number α of choices for Y = (X\Per(f))tΛ ⊆
X for some particular spaces.

Examples 1.13.

(1) If idX : X → X is the identity function idX(x) = x, then P(idX) is the
discrete topology on X. Then Λ = Fix(f) = X, (so Λ \ Fix(f) = ∅) and
there is only one possibility Y = X for the set Y , so α = 1.

(2) If τ is the indiscrete topology on a finite set X = {a1, a2, . . . , an}, then
(X, τ) is a primal space. Indeed, τ = P(f) for the function f : X → X
defined by f(ai) = ai+1 for i ∈ {1, 2, · · · , n − 1} and f(an) = a1. Now
τ = P(f) has only one nonempty closed set, so the closure (that is, the
orbit) of any point ai ∈ X is X, so Λ is a singleton {ai}, and there n
choices for ai. Thus there are α = p(ai) = n possibilities for the set Y .

(3) Let (X,P(f)) be a primal T0-space. Then the product defining α has empty
index set Λ \ Fix(f), and thus there is only α = 1 possibility Y = X for
the set Y .

(4) Let (X, τ) be the primal space with X = Z and τ = P(f) where f : Z −→ Z
is defined by f(n) = |n| − 1. Then we have Λ = I = {a} with a ∈ {−1, 0}.
Thus α = p(−1) = p(0) = 2 so there are two possibilities Y = X \ {−1} or
Y = X \ {0} for the set Y .
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(5) Let (X,P(fk)) be the primal space with X = Z∗ and, for k ∈ N∗, fk :
Z∗ −→ Z∗ is the map defined by

fk(n) =


n+ |n|

n if |n| < k

|n|
n if |n| = k

k |n|n if |n| > k.

Then we have Fix(f) = ∅ and Λ = {a, b} with 1 ≤ a ≤ k and −k ≤ b ≤ −1.
Thus α = p(a)×p(b) = k×k = k2 so there are k2 possibilities for the set Y .

2. Resolvable and n-Resolvable Primal Spaces. Resolvable spaces were
introduced by E. Hewitt in his paper [13]. We give the more general definition of
n-resolvable spaces found in [11].

Definition 2.1. A topological space X is resolvable if it is the union of two disjoint
dense subsets. A dense subset of X whose complement is also dense is said to be
a CD-set on X. A topological space X is called n-resolvable for a cardinal n
(2 ≤ n ≤ ω) if there is a family of n-many mutually disjoint dense subsets of X.

Note that resolvable spaces are precisely the 2-resolvable spaces. Hewitt included
the redundant condition thatX have no isolated points in his definition of resolvable
spaces. We note the obvious fact that X contains n-many mutually disjoint dense
subsets if and only if X is the union of n-many mutually disjoint dense subsets.

For n ∈ N \ {0, 1}, (n+ 1)-resolvable clearly implies n-resolvable. Spaces which
are n-resolvable but not (n + 1)-resolvable are called exactly n-resolvable and are
discussed in Section 4. If X is ω-resolvable, then clearly it is n-resolvable for every
n ∈ N\{0, 1}. The converse also holds, and is given by A. Illanes in [14, Theorem 5].

Examples 2.2.
(1) Consider the map f : Z → Z defined by f(n) = n + 1, where Z is the

set of all integers. It is clearly seen that Vf (n) is infinite for each n ∈ Z.
Now, consider the topological space (Z,P(f)). For any integer n ≥ 2, set
Ak = {j ∈ Z : j ≡ k mod n}. Then A0, A1, . . . , An−1 are mutually disjoint
dense subsets of (Z,P(f)), showing that this space is n-resolvable for every
n ≥ 2 and thus ω-resolvable.

(2) Consider the map f : N→ N defined by f(n) = n+ 1, where N is the set of
all natural numbers including 0. It is clearly seen that |Vf (0)| = 1. Now,
in the topological space (N,P(f)) it is easy to see that a subset A of X is
dense if and only if 0 ∈ A. Therefore, (N,P(f)) is not a resolvable space.

In this section, we use a deep result of A. H. Stone [21] to characterize Alexan-
droff spaces which are n-resolvable. We then present direct arguments to provide
elementary proofs of the corresponding characterizations of n-resolvability in pri-
mal spaces.
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Recall (see [18], for example) that there is a one-to-one correspondence between
Alexandroff topologies on X and quasiorders on X defined by the specialization
relation x � y if and only if x ∈ {y}. In a quasiordered set (X,�), for A ⊆ X
we define ↑A = {x ∈ X : ∃a ∈ A with a � x} and ↓A = {x ∈ X : ∃a ∈ A
with x � a}. Now if the Alexandroff topological space (X, τ) arises from the
specialization quasiorder �, then we have A = ↓A. In particular, for x ∈ X,
↓ {x} = {x} and ↑ {x} is the smallest neighborhood of x. For a primal space
(X,P(f)), we have ↓{x} = Of (x), the orbit of x by f , and ↑{x} = Vf (x).

We now present A. H. Stone’s result.

Theorem 2.3 (A. H. Stone [21]). A necessary and sufficient condition for a qua-
siordered set (indeed, a set with a transitive relation) to admit a partition into n
mutually disjoint cofinal sets is that each element of X has at least n successors;
that is, for every x ∈ X, ↑{x} has at least n elements.

Observe that the following are equivalent:
(a) A is dense in an Alexandroff space X
(b) X = A = ↓A
(c) for every x ∈ X, there exists a ∈ A with x � a
(d) A is cofinal in (X,�).

This allows us to rephrase Stone’s result as follows.

Theorem 2.4. An Alexandroff topological space (X, τ) with specialization qua-
siorder � is n-resolvable if and only if for every x ∈ X, ↑{x} contains at least n
elements. In particular, (X, τ) is resolvable if and only if there are no maximal
elements in (X,�), or equivalently, if and only if (X, τ) has no isolated points.

Corollary 2.5. An Alexandroff space (X, τ) = (X,�) is n-resolvable if and only if
for every x ∈ X, ↑{x} contains at least n distinct elements. That is, an Alexandroff
space (X, τ) is n-resolvable if and only if every maximal element [x] in the T0-
reflection T0(X) arises from a cycle x = x1 ≺ x2 ≺ · · · ≺ xn−1 ≺ xn = x containing
at least n distinct elements xi.

We now turn our attention to providing direct, concrete proofs of these results
for primal spaces.

First, given a primal space (X,P(f)), let us define an equivalence relation R on
X by:

xRy if and only if there exists (r, s) ∈ N× N such that f r(x) = fs(y).

We denote by [x] the equivalence class of x underR. In particular if x is a p-periodic
point of f , then [x] = {x, f(x), f2(x), . . . , fp−1(x)} is called a cycle.

Remark 2.6. Let (X,P(f)) be a primal space and R the equivalence relation
defined above. Then for any x ∈ X and any y ∈ [x], we have Vf (y) ⊆ [x].
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Lemma 2.7. Suppose (X,P(f)) is a primal space with |Vf (x)| ≥ 2 for all x ∈ X.
Then [x] is finite if and only if [x] is a cycle {x, f(x), f2(x), . . . , fn(x)} for some
n ∈ N∗.

Proof. First, we note that any equivalence class can have no more than one cycle.
Now by Remark 2.6, for y1 ∈ [x], any infinite sequence (yi)i∈N of points with
yi ∈ Vf (yi−1) \ {yi−1} for i ≥ 2 must be contained in [x]. If [x] is finite, then the
infinite sequence contains repeated entries and thus [x] contains a cycle through
y1. Since this can be done for any y1 ∈ [x] and [x] cannot contain more than one
cycle, every point y1 ∈ [x] is in the cycle, so [x] is a cycle. �

Suppose (X,P(f)) is a primal space with |Vf (x)| ≥ 2 for all x ∈ X. Let
{xj : j ∈ J} be a complete set of representatives of the equivalence classes of R,
so that {[xj ] : j ∈ J} is a partition of X. By Remark 2.6, Lemma 2.7, and the
convention that a fixed point is a 1-cycle, the collection {[xj ] : j ∈ J} of equivalence
classes may be written as A ∪ B ∪ C, where

A = {[xj ] : [xj ] is a cycle with finite cardinality}
B = {[xj ] : [xj ] is infinite and contains periodic points belonging to a single cycle}
C = {[xj ] : [xj ] is infinite and contains no periodic points}.

These collections will be used below. A representative of each of these collections
is shown in Figure 4.
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Theorem 2.8. Let (X, f) be a flow in Set. For any given natural number n ≥ 2,
the following statements are equivalent.

(i) (X,P(f)) is n-resolvable.
(ii) For each x ∈ X, |Vf (x)| ≥ n.
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Proof. (i) =⇒ (ii) Suppose that (X,P(f)) is n-resolvable. Then there exist n-
many mutually disjoint dense subsets {Ai : 1 ≤ i ≤ n} in X. For any x ∈ X and
for any 1 ≤ i ≤ n, Vf (x) ∩ Ai 6= ∅ , so consequently Vf (x) contains at least n
points.

(ii) =⇒ (i) To construct n-many mutually disjoint dense subsets of X, it suffices
to find n-many mutually disjoint dense subsets of every A ∈ A, of every B ∈ B, and
of every C ∈ C: If A1, . . . , An are mutually disjoint dense subsets of A ∈ A, with
B1, . . . Bn and C1, . . . , Cn defined similarly, then Xi =

⋃
{Ai : A ∈ A} ∪

⋃
{Bi :

B ∈ B} ∪
⋃
{Ci : C ∈ C} for i = 1, . . . , n provide mutually disjoint dense subsets

of X.
Since Vf (x) ⊆ [x], the condition that |Vf (x)| ≥ n, the collection A defined above

has form

A = {[xj ] : [xj ] is a cycle with finite cardinality greater or equal to n}.
For A ∈ A, there exist n distinct points a1, . . . , an in the cycle A = [xj ]. With
Ai = {ai} the sets A1, . . . , An are mutually disjoint and dense in A.

For B ∈ B, let x0 be a fixed periodic point in B and for k ∈ {0, 1, . . . , n−1}, put
Bk = {x ∈ B\Per(f) : the least r ∈ N with f r(x) = x0 satisfies r ≡ k mod n}.
Now B0, B1, . . . , Bn−1 is a partition of the set B\Per(f) of non-periodic points
of B. We will show that each Bk is dense in B. Suppose k ∈ {0, . . . , n − 1} and
x ∈ B. If x is a periodic point, then Vf (x) = B and thus Vf (x)∩Bk 6= ∅. Therefore
x ∈ Bk

B. Now suppose x ∈ B\Per(f) and let r the be the least nonnegative integer
such that f r(x) = x0. If r ≡ j mod n, let m be the least nonnegative integer such
that r+m ≡ k mod n. That is, m = k − j if k ≥ j and m = n− (k − j) if j > k.
Note that m < n, and since |Vf (x)| ≥ n, there exists y ∈ B\Per(f) such that
x = fm(y). Now f r+m(y) = f r(x) = x0, r +m is the smallest nonnegative power
with this property, and r + m ≡ k mod n, so y ∈ Bk. Thus, x ∈ {y}B ⊆ Bk

B,
and this proves Bk is dense in B.

For C ∈ C, fix a point x0 ∈ C. For x ∈ C, there exists a unique pair (rx, sx) ∈
N×N with f rx(x) = fsx(x0). For k ∈ {0, 1, . . . , n−1}, let Ck = {x ∈ C : rx+sx ≡ k
mod n}. Clearly the sets C0, C1, . . . , Cn−1 are mutually disjoint. We will show each
Ck is dense in C. Suppose z ∈ C. Let j ∈ {0, 1, . . . , n−1} be the integer such that
rz + j + sz ≡ k mod n. Since |Vf (z)| ≥ n, there exists z′ ∈ C with f j(z′) = z.
Now f rz+j(z′) = fsz(x0), so z′ ∈ Ck, and z ∈ {z′}

C ⊆ Ck
C , so Ck is dense in C.

�

Corollary 2.9. A primal space is resolvable if and only if it has no isolated points.

Proof. With n = 2, condition (ii) in Theorem 2.8 is equivalent to saying that
(X,P(f)) has no isolated points. �
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Examples 2.10.
(1) As noted in Example 1.13(1), the discrete topology (X, τ) = (X,P(idX)).

Each point of X is a fixed point of f = idX with |Vf (x)| = 1, so Corol-
lary 2.9 shows that X is not resolvable.

(2) If X = {a1, a2, . . . , an} with n ≥ 2 and τ is the indiscrete topology on X,
Example 1.13(2) showed that τ = P(f), where f maps each point ai to the
next, cyclically. Now |Vf (x)| = n for every x ∈ X, and by Theorem 2.8,
X is k-resolvable for every k ∈ {2, . . . , n} and not k-resolvable for every
k ≥ n+ 1.

(3) Let P = {p ∈ Z : |p| is a prime number} and let σ be any permutation on
P having no cycles. That is, let σ be an element of the symmetric group
on P with σk(p) 6= p for every p in P and for every k ∈ N∗.

Now, consider the primal space (X, τ) such that X = Z \ {−1, 0, 1} and
τ = P(f) for the function

f : X −→ X

f(n) =


σ(n) if n ∈ P

n
2 if n is even and n /∈ P ∪ {0}

n+1
2 if n is odd and n /∈ P ∪ {−1, 1}.

Part of the flow (X, f) is illustrated for the particular case when σ(5) = 3,
σ(3) = 7, σ(7) = 2, σ(2) = −3, . . . in Figure 5.

This space X has no periodic points, so A = ∅ and B = ∅. For every
x ∈ X, there exists r ∈ N with f r(x) ∈ P , and thus is easy to see that
x ∼ y for every x, y ∈ X. It follows that X has one equivalence class C of
type C, and for every x ∈ X, |Vf (x)| is infinite. Now Theorem 2.8 shows
that X is n-resolvable for every n ≥ 2 and consequently ω-resolvable.

Given a resolvable primal space X, a natural question is, how many CD-sets
does X admit? The answer to this question is given by the following proposition.

Proposition 2.11. Let (X,P(f)) be a resolvable primal space.
(1) If X is finite, then all R-equivalence classes of X are cycles and X has

exactly
n∏

i=1

(2pi − 2) CD-sets, where n is the number of cycles and pi is the

length of ith cycle.
(2) If X is infinite, then X has an infinitely many CD-sets.

Proof. (1) If X is finite, then clearly B ∪ C = ∅, and by Lemma 2.7, every R-
equivalence class is a finite cycle in A = {Ai : i ∈ I}, where the index set I =
{1, 2, . . . , n} is finite. Since X is resolvable, there are no fixed points. For Ai ∈ A,
let pi ≥ 2 be the period of the cycle Ai. To construct a CD-set in Ai, we have
to choose at least one point of the cycle Ai and at most pi − 1. Thus, there are
2pi −2 possibilities for this choice. Therefore, there are

∏
i∈I

(2pi −2) possibilities for

CD-sets in X.
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(2) Two cases are to be considered, based on the types of R-equivalence classes
defined above Theorem 2.8.

Case 1: B ∪ C 6= ∅. Then X has at least one infinite equivalence class B ∈ B
or C ∈ C. Suppose X has an equivalence class B ∈ B. The construction in the
proof of Theorem 2.8 showed that B has disjoint, dense, infinite subsets B1 and B2

with the property that for i ∈ {1, 2}, Bi \ F is dense for any finite set F . Now B1

and B2 = X \ B1 are complementary, and thus are CD-sets in B. But for every
b2 ∈ B2, B2 \ {b2} and B1 ∪ {b2} are also a CD-sets in B, providing an infinite
number of CD-sets in B. By the same argument, any C ∈ C produces an infinite
number of CD-sets in C. Following the construction of CD-sets for X based on
those from A ∈ A, B ∈ B, and C ∈ C, it follows that X has an infinitely many
CD-sets.

Case 2: B ∪ C = ∅. Then all equivalence classes are in A and are finite, so by
Lemma 2.7, each is a cycle. Since X is infinite, A = {Ai : i ∈ I} where the index
set I is infinite. Now as in the proof of (1), there are

∏
i∈I

(2pi − 2) possibilities for

CD-sets in X, which, as infinite product of numbers 2pi − 2 ≥ 2, is infinite.
�
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3. T0-Resolvablility. Let D be a reflective subcategory in Top with reflector
F, and P a topological property. It is a natural question to ask when F(X) satisfies
P. In [3], Belaid, Echi and Lazaar study this concept for several separation axioms,
and defined a topological space X to be T(F,P) if F(X) satisfies P. T(F,P) spaces
for particular choices of D, F, and P are investigated in [3], [7] and [8]. In this
section, we study another such case. In the reflective subcategory D = Top0 of
T0-spaces in Top, with reflector F = T0, we classify those spaces X for which
T0(X) is resolvable.

Definition 3.1. A topological space is called T0-resolvable if its T0-reflection is
resolvable.

The following consequence of Theorem 2.8 characterizes T0-resolvable spaces for
the class of primal spaces.

Theorem 3.2. Let (X, f) be a flow in Set. Then the following statements are
equivalent:

(i) (X,P(f)) is a T0-resolvable space.

(ii) Vf (x) is infinite for each x ∈ X.

Proof. Suppose that T0(X) is resolvable. Now T0(X) is primal, with T0(X) =
(Y,P(g)) as in Corollary 1.10, so Theorem 2.8 applies to (Y,P(g)). Since T0(X) is
T0, there are no cycles in (Y,P(g)), so each R-equivalence class is an infinite set
with no minimal points. So for every y ∈ Y , Vg(y) is infinite and consequently
for any x ∈ X, there exists y ∈ Y , such that Vf (x) ⊇ Vg(y) (see Lemma 1.2).
Therefore, Vf (x) is infinite for every x ∈ X.

Conversely, suppose that for any x ∈ X, Vf (x) is infinite. Then the set A of
R-equivalence classes is empty and consequently, Vg(y) is infinite for every y in
(Y,P(g)) = T0(Y ). Then Theorem 2.8 implies T0((X,P(f))) is resolvable. �

Combining Theorem 2.8 and condition (ii) of Theorem 3.2 gives the following
result.

Corollary 3.3. T0-resolvable implies resolvable. More precisely, if T0((X,P(f)))
is resolvable, then (X,P(f)) is n-resolvable for every n ∈ N \ {0, 1}, and thus
(X,P(f)) is ω-resolvable.

The converse of Corollary 3.3 fails as seen by the following example.

Example 3.4. Let X := {0, 1} and define f from X to itself by f(0) = 1 and
f(1) = 0. Then P(f) is the indiscrete topology on X, so {0} and {1} are disjoint
dense subsets of (X,P(f)) and thus (X,P(f)) is resolvable. But T0((X,P(f))) is
a one-point space, which is not resolvable.
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4. Exactly n-Resolvable Primal Spaces. Questions about resolvability of
a topological space address basic foundational properties of the space, so it is not
surprising that many variations of resolvability have been studied. In this section,
we characterize the primal spaces which are exactly n-resolvable and strongly ex-
actly n-resolvable. These variations of resolvability are discussed in [4, 5, 11]. We
begin with the definitions.

Definition 4.1. A topological space X is called exactly n-resolvable for n > 1 if X
is n-resolvable but not (n+1)-resolvable. Exactly 1-resolvable spaces are commonly
called irresolvable spaces.

Definition 4.2. A topological space X is called strongly exactly n-resolvable, de-
noted by SEnR, if X is n-resolvable and no nonempty subset of X is (n + 1)-
resolvable. SE1R-spaces are commonly called strongly irresolvable spaces. Strongly
irresolvable spaces (abbreviated as SI-spaces) are also called hereditarily irresolvable
spaces.

Examples 4.3.
(1) It is clear that strongly exactly n-resolvable spaces are exactly n-resolvable

spaces.

(2) Let X be a finite set with cardinality n ≥ 2 equipped with the indiscrete
topology. On the one hand it is clear that X is a k-resolvable space for
every 2 ≤ k ≤ n. Now every nonempty subset A of X satisfies |A| < n+ 1
and thus is not (n + 1)-resolvable. Therefore X is strongly exactly n-
resolvable. On the other hand X is not strongly exactly k-resolvable for
every 2 ≤ k ≤ n − 1. Indeed X is k-resolvable and (k + 1)-resolvable for
every 2 ≤ k ≤ n− 1.

(3) Consider the set X = {0, 1, 2, 3} equipped with the topology defined by
{0} = {0, 1, 2, 3}, {1} = {1, 2, 3}, {2} = {2, 3} and {3} = {3}. Every dense
subset of X must contain 0, so X is an irresolvable space. Furthermore, if
A is a subset of X, then every dense subset of A must contain the smallest
element of A and thus every subset A of X is irresolvable. Therefore X is
hereditarily irresolvable.

As an immediate consequence of Theorem 2.8, we have the following result.

Corollary 4.4. Let (X, f) be a flow in Set and n ∈ N (n ≥ 2). Then the following
statements are equivalent:

(i) (X,P(f)) is exactly n-resolvable.
(ii) (X,P(f)) is an n-resolvable space with at least one n-periodic point.

For general Alexandroff spaces, Theorem 2.4 provides the following immediate
result.

Corollary 4.5. An Alexandroff space (X,�) is exactly n-resolvable if and only if
it is n-resolvable and there exists a maximal element [x] in T0(X) generated from
a cycle of length exactly n.
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In [14, Theorem 5], A. Illanes proved that if a topological space X is n-resolvable
for each n, then X is ω-resolvable. Hence the following result is an immediate
consequence of Theorem 2.8, Corollary 3.2 and [14, Theorem 5].

Corollary 4.6. Let (X, f) be a flow in Set. Then the following statements are
equivalent:

(i) (X,P(f)) is an ω-resolvable space.

(ii) For any x ∈ X, Vf (x) is infinite.

(iii) (X,P(f)) is T0-resolvable space.

As another consequence of Theorem 2.8, we now characterize the primal spaces
which are strongly exactly n-resolvable for n ≥ 2.

Proposition 4.7. Let (X, f) be a flow in Set and 1 < n ∈ N. Then the following
statements are equivalent.

(i) (X,P(f)) is a strongly exactly n-resolvable space.

(ii) For each y ∈ X, y is a periodic point with period n.

Proof. (i) =⇒ (ii) Suppose (X,P(f)) is a strongly exactly n-resolvable space. By
Theorem 2.8, |Vf (y)| ≥ 2 for all y ∈ X.

First we will show that each point y ∈ X is periodic. Suppose to the contrary
that that there exists a non-periodic point y ∈ X. We will show that Vf (y) is (n+1)-
resolvable, contrary to X being strongly exactly n-resolvable. Set B = {y} and
A0 =

⋃
k∈N f

−kn(B), A1 = f−1(A0) =
⋃

k∈N f
−kn−1(B), . . . , An = f−1(An−1) =⋃

k∈N f
−kn−n(B). It is clear that {Aj : 0 ≤ j ≤ n} is a family of n + 1 disjoint

dense subsets of Vf (y), a contradiction. Therefore, for each y ∈ X, we have y is a
periodic point.

Next, we will show that each y ∈ X has a period p = n. Suppose that there exists
y ∈ X with period p > n. Then, one can easily see that the family {Fk : 0 ≤ k ≤ n}
where F0 = {y}, F1 = {f(y)}, F2 = {f2(y)}, . . . , Fn = {fn(y)}, Fn+1(y) =

{fm(y) : n + 1 ≤ m ≤ p} is a family of n + 1 disjoint dense subsets of {y}, again
contradicting that X has no (n+ 1)-resolvable subspaces.

(ii) =⇒ (i) Suppose that each y ∈ X is a periodic point of period p = n. Then,
|Vf (y)| = n for every y ∈ X and thus, by Theorem 2.8, (X,P(f)) is n-resolvable.

Now, let A be a nonempty subset of X and {Ai : i ∈ I} be a family of disjoint
dense subsets of A. Now for each y ∈ X, {y} = Vf (y) is an open subset of X with
n points, so U = {y} ∩ A is an open subset of A with no more than n points. For
y ∈ A, we have Ai∩{y} 6= ∅ for each i ∈ I. Since {Ai : i ∈ I} is a family of disjoint
subsets of A, then |I| ≤ n. Thus, no nonempty subset of X is (n+1)-resolvable. �

We note that Example 2.10(2) is exactly n-resolvable. Examples 2.2(1) and 2.10(3)
are ω-resolvable.
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Example 4.8. The space (Z2,P(f)) given in Example 1.11 is exactly 4-resolvable.
Indeed for every x ∈ Z2, we have |Vf (x)| ≥ 4 and all points of the squares are
4-periodic points. From Corollary 4.4, it follows that (Z2,P(f)) is exactly 4-
resolvable.

The subspace B = Z × {1, 2} of (Z2,P(f)) is strongly exactly 4-resolvable.
Indeed B is the subset of Z2 (equipped naturally with induced topology, which
is primal by Echi [9]) consisting of the squares in Figure 3. Every point in B is
4-periodic and consequently, by Proposition 4.7, B is strongly exactly 4-resolvable.

The subspace C = Z× {3, 4, 5, ....} of (Z2,P(f)) is ω-resolvable. This subspace
is represented by the horizontal lines in Figure 3, and thus for every x ∈ C, Vf (x)
is infinite. Corollary 4.6 shows C to be ω-resolvable.
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