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Let (X*, τ*, ≤*) be an n-point T2-ordered compactification of the T3.5-
ordered topological space (X, τ , ≤). Let V↑∗ (a) be the filter on X* having a
base of ≤*-increasing τ*-open neighborhoods of a ∈ X*, with V↓∗ (a) defined
dually. Both the topology τ* and the order ≤* are determined by the
collection C* = {V↑∗ (a), V↓∗ (a) : a ∈ X*}. An intrinsic characterization on
X for this collection is pointed out.

A partially ordered topological space (X, τ , ≤) is T2-ordered if the graph of the order is closed
in X × X. By a space we shall mean a T2-ordered topological space. An order compactification
of (X, τ , ≤) is a topological compactification (X*, τ*) of (X, τ) together with a closed order ≤*
that extends the order ≤. A space has an order compactification iff it is T3.5-ordered (completely
regularly ordered in [3]). A subset A of a poset (X, ≤) is increasing if a ∈ A and x ≥ a imply
x ∈ A. Decreasing sets are defined dually. For further information on ordered topological spaces,
see [3], [1], and [4]. With the order F ≤ G iff F ⊆ G, the supremum F ∨ G of filters F and G exists
iff ∅ �∈ B ≡ {F ∩G : F ∈ F , G ∈ G}, in which case B is a base for F ∨ G.

Let {Gi}ni=1 be an n-star (see [2]) corresponding to (X*, τ*), where X* = X ∪ {ωi}ni=1 and (X*,
τ*, ≤*) is an n-point order compactification of the T3.5-ordered topological space (X, τ , ≤). Let C
= {V↑(a), V↓(a) : a ∈ X*} where V↑(a) is the trace on X of V↑∗ (a), with V↓(a) defined dually. For
x ∈ X, let V(x) be the neighborhood filter at x. Let K = X\⋃n

i=1Gi, and let V(ωi) be the filter
generated by {N ⊆ X : (K ∪Gi) \N is compact}.

Theorem 1. C is the unique collection of filters on (X, τ , ≤) satisfying the following conditions
for any a, b ∈ X* and any x, y ∈ X.
(1) V↑(a) (respectively, V↓(a)) has a filter base of τ -open ≤-increasing (respectively,

≤-decreasing) sets.
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(2) V↑(a) ∨ V↓(a) = V(a).
(3) V↑(x) ∨ V↓(y) exists iff x ≤ y.
(4) V↑(a) ∨ V↓(b) exists =⇒ V↑(a) ≤ V(b) and V↓(b) ≤ V(a).

Proof: It is easy to see that C satisfies these conditions. Suppose that {U↑(a), U↓(a) : a ∈
X*} is any other family of filters satisfying these conditions.

U↑(a) ≤ V↑(a): For any U ′ ∈ U↑(a), there exists τ -open ≤-increasing U ∈ U↑(a) such that (1)
U ⊆ U ′, and (2) ω ∈ X*\X and ω �≥ a imply that there exists N ∈ U↓(ω) with N ∩ U = ∅. Let
U* = U ∪ {ω ∈ X*\X : ω ≥ a}. Now U* is τ*-open since U was a neighborhood of each of its
points, and for ω ≥ a, the existence of U↑(a) ∨ U↓(ω) implies U↑(a) ≤ U(ω), and thus U* is a
neighborhood of ω. To see that U* is ≤*-increasing, suppose b ∈ U* and b ≤* c. Clearly c ∈ U*
if b, c ∈ X or if b, c ∈ X*\X. Suppose b ∈ U* ∩X, c = ω ∈ X*\X. If ω �∈ U*, then there exists
N ∈ U↓(ω) such that N ∩ U = ∅; but b <* ω =⇒ U↓(ω) ≤ U(b) =⇒ b ∈ N ∩ U , a contradiction.
Finally, if b = ω ∈ U*\X, ω <* c, and c ∈ X, then a <* c =⇒ U↑(a) ≤ U(c) =⇒ c ∈ U . Now
U = U* ∩X ⊆ U ′, where U ′ was an arbitrary element of U↑(a) and U* is the τ*-open ≤*-increasing
neighborhood of a described above. It follows that U↑(a) ≤ V↑(a).
V↑(a) ≤ U↑(a): First notice that a �≤* c implies there exist N ∈ U↓(c) and U ∈ U↑(a) with

N ∩U = ∅, and therefore c �∈ clτ∗(U). Thus,
⋂ {clτ∗(U) : U ∈ U↑(a)} = i∗(a) ≡ {x ∈ X* : a ≤* x}.

Now suppose V↑(a) �≤ U↑(a). Then there exists V ∈ V↑(a) such that for all U ∈ U↑(a), U\V �= ∅.
Let V * be a τ*-open ≤*-increasing neighborhood of a in X* such that V * ∩X ⊆ V . Without loss
of generality, ω ∈ V *\X iff a ≤* ω. Because U\V �= ∅ =⇒ clτ∗(U)\V * �= ∅ (∀U ∈ U↑(a) ), we have
for any finite collection {Ui ∈ U↑(a) : i = 1, . . . , n}, ∅ �= [clτ∗(

⋂n
i=1 Ui)]\V * ⊆ [

⋂n
i=1 clτ∗Ui]\V *

=
⋂n
i=1 [clτ∗Ui\V *]. Thus, C = {clτ∗U\V * : U ∈ U↑(a)} is a collection of τ*-closed sets in X*

satisfying the finite intersection property, but
⋂ C = i∗(a)\V * = ∅, contrary to the compactness of

X*.

The dual arguments for U↓(a) and V↓(a) complete the proof.

By [2], V(ωi) is the filter of punctured neighborhoods of ωi. Now, in view of item (2) of the
theorem, C defines the topology τ*. The extension of item (3) to arbitrary points of X* defines the
order ≤*. Thus, the collection C∗ is determined by C, and Theorem 1 gives a characterization of C
intrinsic to X.

Lemma 2. If (Y, τ , ≤) is a compact T2-ordered lattice, with V↑(y) representing the filter
generated by the τ -open ≤-increasing neighborhoods of y, then V↑(x) ∨ V↑(y) = V↑(x ∨ y).

Proof: Clearly V↑(x) ∨ V↑(y) ≤ V↑(x ∨ y). Conversely, let N be an open increasing element of
V↑(x ∨ y). For c ∈ Y \N , c is not an upper bound of x and y, so either x �≤ c or y �≤ c. Thus, there
exists an open decreasing neighborhood Nc of c disjoint from some open increasing neighborhood
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Mc of x or y. Now {Nc : c ∈ Y \N} is an open cover of the compact Y \N . If {Nc : c ∈ F} is a finite
subcover, then

⋂
c∈F Mc ⊆ N and

⋂
c∈F Mc ∈ V↑(x) ∨ V↑(y).

Theorem 3. Let X* be an n-point order compactification of X, and C = {V↑(a),V↓(a) : a ∈ X*}
be the associated collection of trace filters on X. Then X* is a lattice iff both C↑ ≡ {V↑(a) : a ∈ X*}
and C↓ ≡ {V↓(a) : a ∈ X*} form upper semi-lattices.

Proof: That C↑ and C↓ from upper semi-lattices when X is a lattice follows from Lemma 2 and
its dual. Conversely, if C↑ is an upper semi-lattice, then for any a, b ∈ X*, V↑(a) ∨ V↑(b) exists and
is equal to an element V↑(c) ∈ C↑ for some c ∈ X*. Now V↑(a) ≤ V↑(c) ≤ V(c) implies V↑(a)∨V↓(c)
exists, whence a ≤* c. Similarly, b ≤* c, so that c is an upper bound of a and b. If d is another
upper bound of a and b, then the existence of V↑(a)∨V↓(d) implies V↑(a) ≤ V(d) and V↑(b) ≤ V(d).
Thus, V↑(c) = V↑(a) ∨ V↑(b) ≤ V(d) so that V↑(c) ∨ V↓(d) exists, that is, c ≤* d.

A similar argument shows that the existence of a∧b follows from C↓ being an upper semi-lattice.

Let X be a bounded T3.5-ordered poset and X* be any T2-order compactification of X. Then
X* must be bounded. Furthermore, any pair a, b ∈ X* must have a minimal upper bound since
the upper bounds of a and b are given by i(a) ∩ i(b), which is closed since X* is T1-ordered, and a
theorem of Wallace (Theorem 1 in [5]) guarantees that a non-empty compact T2-ordered space must
have a minimal element. Thus, X* fails to be a lattice iff there exist a, b ∈ X* such that a and b
have two minimal upper bounds, or two maximal lower bounds.
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