REMARKS ON N-POINT ORDER COMPACTIFICATIONS

THOMAS A. RICHMOND

Department of Mathematics, Western Kentucky University, Bowling Green Kentucky 42101 USA

(Received 1 February 1989; accepted 17 January 1990)

Let (X^*, τ^*, \leq^*) be an n-point T_2 -ordered compactification of the $T_{3.5}$ ordered topological space (X, τ, \leq) . Let $\mathcal{V}^{\uparrow}_*(a)$ be the filter on X^* having a base of \leq^* -increasing τ^* -open neighborhoods of $a \in X^*$, with $\mathcal{V}^{\downarrow}_*(a)$ defined dually. Both the topology τ^* and the order \leq^* are determined by the collection $\mathcal{C}^* = {\mathcal{V}^{\uparrow}_*(a), \mathcal{V}^{\downarrow}_*(a) : a \in X^*}$. An intrinsic characterization on X for this collection is pointed out.

A partially ordered topological space (X, τ, \leq) is T_2 -ordered if the graph of the order is closed in $X \times X$. By a space we shall mean a T_2 -ordered topological space. An order compactification of (X, τ, \leq) is a topological compactification (X^*, τ^*) of (X, τ) together with a closed order \leq^* that extends the order \leq . A space has an order compactification iff it is $T_{3.5}$ -ordered (completely regularly ordered in [3]). A subset A of a poset (X, \leq) is increasing if $a \in A$ and $x \geq a$ imply $x \in A$. Decreasing sets are defined dually. For further information on ordered topological spaces, see [3], [1], and [4]. With the order $\mathcal{F} \leq \mathcal{G}$ iff $\mathcal{F} \subseteq \mathcal{G}$, the supremum $\mathcal{F} \lor \mathcal{G}$ of filters \mathcal{F} and \mathcal{G} exists iff $\emptyset \notin \mathcal{B} \equiv \{F \cap G : F \in \mathcal{F}, G \in \mathcal{G}\}$, in which case \mathcal{B} is a base for $\mathcal{F} \lor \mathcal{G}$.

Let $\{G_i\}_{i=1}^n$ be an n-star (see [2]) corresponding to (X^*, τ^*) , where $X^* = X \cup \{\omega_i\}_{i=1}^n$ and (X^*, τ^*, \leq^*) is an n-point order compactification of the $T_{3,5}$ -ordered topological space (X, τ, \leq) . Let $\mathcal{C} = \{\mathcal{V}^{\uparrow}(a), \mathcal{V}^{\downarrow}(a) : a \in X^*\}$ where $\mathcal{V}^{\uparrow}(a)$ is the trace on X of $\mathcal{V}^{\uparrow}_*(a)$, with $\mathcal{V}^{\downarrow}(a)$ defined dually. For $x \in X$, let $\mathcal{V}(x)$ be the neighborhood filter at x. Let $K = X \setminus \bigcup_{i=1}^n G_i$, and let $\mathcal{V}(\omega_i)$ be the filter generated by $\{N \subseteq X : (K \cup G_i) \setminus N \text{ is compact}\}$.

Theorem 1. C is the unique collection of filters on (X, τ, \leq) satisfying the following conditions for any $a, b \in X^*$ and any $x, y \in X$.

(1) $\mathcal{V}^{\uparrow}(a)$ (respectively, $\mathcal{V}^{\downarrow}(a)$) has a filter base of τ -open \leq -increasing (respectively, \leq -decreasing) sets.

THOMAS A. RICHMOND

- (2) $\mathcal{V}^{\uparrow}(a) \lor \mathcal{V}^{\downarrow}(a) = \mathcal{V}(a).$
- (3) $\mathcal{V}^{\uparrow}(x) \vee \mathcal{V}^{\downarrow}(y)$ exists iff $x \leq y$.
- (4) $\mathcal{V}^{\uparrow}(a) \vee \mathcal{V}^{\downarrow}(b)$ exists $\Longrightarrow \mathcal{V}^{\uparrow}(a) \leq \mathcal{V}(b)$ and $\mathcal{V}^{\downarrow}(b) \leq \mathcal{V}(a)$.

Proof: It is easy to see that C satisfies these conditions. Suppose that $\{\mathcal{U}^{\uparrow}(a), \mathcal{U}^{\downarrow}(a) : a \in X^*\}$ is any other family of filters satisfying these conditions.

 $\mathcal{U}^{\uparrow}(a) \leq \mathcal{V}^{\uparrow}(a)$: For any $U' \in \mathcal{U}^{\uparrow}(a)$, there exists τ -open \leq -increasing $U \in \mathcal{U}^{\uparrow}(a)$ such that (1) $U \subseteq U'$, and (2) $\omega \in X^* \setminus X$ and $\omega \geq a$ imply that there exists $N \in \mathcal{U}^{\downarrow}(\omega)$ with $N \cap U = \emptyset$. Let $U^* = U \cup \{\omega \in X^* \setminus X : \omega \geq a\}$. Now U^* is τ^* -open since U was a neighborhood of each of its points, and for $\omega \geq a$, the existence of $\mathcal{U}^{\uparrow}(a) \vee \mathcal{U}^{\downarrow}(\omega)$ implies $\mathcal{U}^{\uparrow}(a) \leq \mathcal{U}(\omega)$, and thus U^* is a neighborhood of ω . To see that U^* is \leq^* -increasing, suppose $b \in U^*$ and $b \leq^* c$. Clearly $c \in U^*$ if $b, c \in X$ or if $b, c \in X^* \setminus X$. Suppose $b \in U^* \cap X$, $c = \omega \in X^* \setminus X$. If $\omega \notin U^*$, then there exists $N \in \mathcal{U}^{\downarrow}(\omega)$ such that $N \cap U = \emptyset$; but $b <^* \omega \Longrightarrow \mathcal{U}^{\downarrow}(\omega) \leq \mathcal{U}(b) \Longrightarrow b \in N \cap U$, a contradiction. Finally, if $b = \omega \in U^* \setminus X$, $\omega <^* c$, and $c \in X$, then $a <^* c \Longrightarrow \mathcal{U}^{\uparrow}(a) \leq \mathcal{U}(c) \Longrightarrow c \in U$. Now $U = U^* \cap X \subseteq U'$, where U' was an arbitrary element of $\mathcal{U}^{\uparrow}(a)$ and U^* is the τ^* -open \leq^* -increasing neighborhood of a described above. It follows that $\mathcal{U}^{\uparrow}(a) \leq \mathcal{V}^{\uparrow}(a)$.

 $\mathcal{V}^{\uparrow}(a) \leq \mathcal{U}^{\uparrow}(a)$: First notice that $a \not\leq^* c$ implies there exist $N \in \mathcal{U}^{\downarrow}(c)$ and $U \in \mathcal{U}^{\uparrow}(a)$ with $N \cap U = \emptyset$, and therefore $c \notin \operatorname{cl}_{\tau*}(U)$. Thus, $\bigcap \{\operatorname{cl}_{\tau*}(U) : U \in \mathcal{U}^{\uparrow}(a)\} = i_*(a) \equiv \{x \in X^* : a \leq^* x\}$. Now suppose $\mathcal{V}^{\uparrow}(a) \not\leq \mathcal{U}^{\uparrow}(a)$. Then there exists $V \in \mathcal{V}^{\uparrow}(a)$ such that for all $U \in \mathcal{U}^{\uparrow}(a), U \setminus V \neq \emptyset$. Let V^* be a τ^* -open \leq^* -increasing neighborhood of a in X^* such that $V^* \cap X \subseteq V$. Without loss of generality, $\omega \in V^* \setminus X$ iff $a \leq^* \omega$. Because $U \setminus V \neq \emptyset \Longrightarrow \operatorname{cl}_{\tau*}(U) \setminus V^* \neq \emptyset$ ($\forall U \in \mathcal{U}^{\uparrow}(a)$), we have for any finite collection $\{U_i \in \mathcal{U}^{\uparrow}(a) : i = 1, \ldots, n\}, \ \emptyset \neq [\operatorname{cl}_{\tau*}(\bigcap_{i=1}^n U_i)] \setminus V^* \subseteq [\bigcap_{i=1}^n \operatorname{cl}_{\tau*}U_i] \setminus V^*$ satisfying the finite intersection property, but $\bigcap \mathcal{C} = i_*(a) \setminus V^* = \emptyset$, contrary to the compactness of X^* .

The dual arguments for $\mathcal{U}^{\downarrow}(a)$ and $\mathcal{V}^{\downarrow}(a)$ complete the proof.

By [2], $\mathcal{V}(\omega_i)$ is the filter of punctured neighborhoods of ω_i . Now, in view of item (2) of the theorem, \mathcal{C} defines the topology τ^* . The extension of item (3) to arbitrary points of X^{*} defines the order \leq^* . Thus, the collection \mathcal{C}_* is determined by \mathcal{C} , and Theorem 1 gives a characterization of \mathcal{C} intrinsic to X.

Lemma 2. If (Y, τ, \leq) is a compact T_2 -ordered lattice, with $\mathcal{V}^{\uparrow}(y)$ representing the filter generated by the τ -open \leq -increasing neighborhoods of y, then $\mathcal{V}^{\uparrow}(x) \vee \mathcal{V}^{\uparrow}(y) = \mathcal{V}^{\uparrow}(x \vee y)$.

Proof: Clearly $\mathcal{V}^{\uparrow}(x) \vee \mathcal{V}^{\uparrow}(y) \leq \mathcal{V}^{\uparrow}(x \vee y)$. Conversely, let N be an open increasing element of $\mathcal{V}^{\uparrow}(x \vee y)$. For $c \in Y \setminus N$, c is not an upper bound of x and y, so either $x \not\leq c$ or $y \not\leq c$. Thus, there exists an open decreasing neighborhood N_c of c disjoint from some open increasing neighborhood

528

 M_c of x or y. Now $\{N_c : c \in Y \setminus N\}$ is an open cover of the compact $Y \setminus N$. If $\{N_c : c \in F\}$ is a finite subcover, then $\bigcap_{c \in F} M_c \subseteq N$ and $\bigcap_{c \in F} M_c \in \mathcal{V}^{\uparrow}(x) \lor \mathcal{V}^{\uparrow}(y)$.

Theorem 3. Let X* be an n-point order compactification of X, and $C = \{\mathcal{V}^{\uparrow}(a), \mathcal{V}^{\downarrow}(a) : a \in X^*\}$ be the associated collection of trace filters on X. Then X* is a lattice iff both $C^{\uparrow} \equiv \{\mathcal{V}^{\uparrow}(a) : a \in X^*\}$ and $C^{\downarrow} \equiv \{\mathcal{V}^{\downarrow}(a) : a \in X^*\}$ form upper semi-lattices.

Proof: That \mathcal{C}^{\uparrow} and \mathcal{C}^{\downarrow} from upper semi-lattices when X is a lattice follows from Lemma 2 and its dual. Conversely, if \mathcal{C}^{\uparrow} is an upper semi-lattice, then for any $a, b \in X^*$, $\mathcal{V}^{\uparrow}(a) \vee \mathcal{V}^{\uparrow}(b)$ exists and is equal to an element $\mathcal{V}^{\uparrow}(c) \in \mathcal{C}^{\uparrow}$ for some $c \in X^*$. Now $\mathcal{V}^{\uparrow}(a) \leq \mathcal{V}^{\uparrow}(c) \leq \mathcal{V}(c)$ implies $\mathcal{V}^{\uparrow}(a) \vee \mathcal{V}^{\downarrow}(c)$ exists, whence $a \leq^* c$. Similarly, $b \leq^* c$, so that c is an upper bound of a and b. If d is another upper bound of a and b, then the existence of $\mathcal{V}^{\uparrow}(a) \vee \mathcal{V}^{\downarrow}(d)$ implies $\mathcal{V}^{\uparrow}(a) \leq \mathcal{V}(d)$ and $\mathcal{V}^{\uparrow}(b) \leq \mathcal{V}(d)$. Thus, $\mathcal{V}^{\uparrow}(c) = \mathcal{V}^{\uparrow}(a) \vee \mathcal{V}^{\uparrow}(b) \leq \mathcal{V}(d)$ so that $\mathcal{V}^{\uparrow}(c) \vee \mathcal{V}^{\downarrow}(d)$ exists, that is, $c \leq^* d$.

A similar argument shows that the existence of $a \wedge b$ follows from \mathcal{C}^{\downarrow} being an upper semi-lattice.

Let X be a bounded $T_{3.5}$ -ordered poset and X^{*} be any T_2 -order compactification of X. Then X^{*} must be bounded. Furthermore, any pair $a, b \in X^*$ must have a minimal upper bound since the upper bounds of a and b are given by $i(a) \cap i(b)$, which is closed since X^{*} is T_1 -ordered, and a theorem of Wallace (Theorem 1 in [5]) guarantees that a non-empty compact T_2 -ordered space must have a minimal element. Thus, X^{*} fails to be a lattice iff there exist $a, b \in X^*$ such that a and b have two minimal upper bounds, or two maximal lower bounds.

References

- CHOE, T. H., Partially Ordered Topological Spaces, An. Acad. brasil. Ciênc., 51 (1), (1979) 53-63.
- [2] MAGILL, K. D., JR., N-point Compactifications, Amer. Math. Monthly, 72 (1965) 1075-1081.
- [3] NACHBIN, L., *Topology and Order*, Van Nostrand, New York Math Studies, 4, Princeton, NJ (1965).
- [4] RICHMOND, T. A., Finite-Point Order Compactifications, Math. Proc. Camb. Philos. Soc., 102 (1987) 467-473.
- [5] WARD, L. E., JR., Partially Ordered Topological Spaces, Proc. Am. Math. Soc., 5 (1954) 144-161.

NOTE: This is a fascimilie of the original article. Typographical errors have been corrected and titles have been included in citations.

Remarks on N-Point Order Compactifications

by Thomas A. Richmond

Department of Mathematics Western Kentucky University Bowling Green, Kentucky 42101 USA

Abstract: Let (X^*, τ^*, \leq^*) be an n-point T_2 -ordered compactification of the $T_{3.5}$ -ordered topological space (X, τ, \leq) . Let $\mathcal{V}^{\uparrow}_*(a)$ be the filter on X^* having a base of \leq^* -increasing τ^* -open neighborhoods of $a \in X^*$, with $\mathcal{V}^{\downarrow}_*(a)$ defined dually. Both the topology τ^* and the order \leq^* are determined by the collection $\mathcal{C}^* = \{\mathcal{V}^{\uparrow}_*(a), \mathcal{V}^{\downarrow}_*(a) : a \in X^*\}$. An intrinsic characterization on X for this collection is pointed out.