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Let (X*, 7%, <*) be an n-point Tr-ordered compactification of the Tj 5-
ordered topological space (X, 7, <). Let V! (a) be the filter on X* having a
base of <*-increasing 7*-open neighborhoods of a € X*, with V¥ (a) defined
dually. Both the topology 7* and the order <* are determined by the
collection C* = {VI(a), Vi(a) : a € X*}. An intrinsic characterization on
X for this collection is pointed out.

A partially ordered topological space (X, 7, <) is Ty-ordered if the graph of the order is closed
in X x X. By a space we shall mean a Ts-ordered topological space. An order compactification
of (X, 7, <) is a topological compactification (X*, 7*) of (X, 7) together with a closed order <*
that extends the order <. A space has an order compactification iff it is T3 5-ordered (completely
regularly ordered in [3]). A subset A of a poset (X, <) is increasing if a € A and z > a imply
x € A. Decreasing sets are defined dually. For further information on ordered topological spaces,
see [3], [1], and [4]. With the order F < G iff F C G, the supremum F V G of filters F and G exists
if0gB={FNG:FeF,GEe G}, in which case B is a base for F V G.

Let {G;}™; be an n-star (see [2]) corresponding to (X*, 7¥*), where X* = X U {w;}12; and (X*,
7*, <*) is an n-point order compactification of the T3 5-ordered topological space (X, 7, <). Let C
= {V'(a), V}(a) : a € X*} where V1 (a) is the trace on X of V] (a), with V!(a) defined dually. For
z € X, let V(z) be the neighborhood filter at z. Let K = X\ |J_, G;, and let V(w;) be the filter
generated by {N C X : (K UG;) \ N is compact}.

Theorem 1. C is the unique collection of filters on (X, 7, <) satisfying the following conditions
for any a,b € X* and any z,y € X.
(1) V1(a) (respectively, V!(a)) has a filter base of T-open <-increasing (respectively,
<-decreasing) sets.
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(2) Vi(a) v V(a) = V(a).
(3) Vi) v V(y) exists iff 2 < y.
(4) V1(a) v VY(b) exists = V1(a) < V(b) and V(b) < V(a).

Proof: Tt is easy to see that C satisfies these conditions. Suppose that {U'(a), U'(a) : a €
X*} is any other family of filters satisfying these conditions.

U'(a) < V1(a): For any U’ € U'(a), there exists T-open <-increasing U € U'(a) such that (1)
UCU' and (2) w € X*\X and w # a imply that there exists N € U} (w) with NNU = 0. Let
U =UU{w e X*\X : w > a}. Now U* is 7*-open since U was a neighborhood of each of its
points, and for w > a, the existence of U'(a) vV U'(w) implies U'(a) < U(w), and thus U* is a
neighborhood of w. To see that U* is <*-increasing, suppose b € U* and b <* ¢. Clearly c € U*
ifbce X orifb,ce X*\X. Suppose b € U*NX, c=w € X*\X. If w & U*, then there exists
N € U (w) such that NNU = 0; but b <* w = U} (w) <U() => b € NNU, a contradiction.
Finally, if b = w € UM\X, w <* ¢, and ¢ € X, then a <* ¢ = U'(a) < U(c) = ¢ € U. Now
U =U*NX CU’, where U’ was an arbitrary element of ! (a) and U* is the 7*-open <*-increasing
neighborhood of a described above. It follows that U'(a) < V(a).

V1(a) < U'(a): First notice that a £* ¢ implies there exist N € U'(c) and U € U'(a) with
NNU = B, and therefore ¢ & cl,.(U). Thus, (] {cl«(U) : U €U (a)} = i.(a) = {z € X*: a <* x}.
Now suppose V1(a) £ UT(a). Then there exists V € V1(a) such that for all U € U (a), U\V # 0.
Let V* be a 7*-open <*-increasing neighborhood of @ in X* such that V* N X C V. Without loss
of generality, w € V*\ X iff a <* w. Because U\V # ) = cl,.(U)\V* # 0 (VU € U'(a) ), we have
for any finite collection {U; € UT(a) : i = 1,....n}, 0 # [cla(Niey U)\V* C [Nie; LU \VF
=N, [l U\V*. Thus, C = {cl.,U\V* : U € U'(a)} is a collection of T*-closed sets in X*
satisfying the finite intersection property, but (\C = i.(a)\V* = 0, contrary to the compactness of
X*,

The dual arguments for 2! (a) and V!(a) complete the proof. i

By [2], V(w;) is the filter of punctured neighborhoods of w;. Now, in view of item (2) of the
theorem, C defines the topology 7*. The extension of item (3) to arbitrary points of X* defines the
order <*. Thus, the collection C, is determined by C, and Theorem 1 gives a characterization of C
intrinsic to X.

Lemma 2. If (Y, 7, <) is a compact Th-ordered lattice, with VI(y) representing the filter
generated by the T-open <-increasing neighborhoods of y, then V1(z) v V1(y) = VI(z V y).

Proof: Clearly V1(x) v V1(y) < V1(z Vy). Conversely, let N be an open increasing element of
VI(z Vy). For ¢ € Y\N, cis not an upper bound of 2 and ¥, so either z £ c or y £ c. Thus, there
exists an open decreasing neighborhood N, of ¢ disjoint from some open increasing neighborhood
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M. of x or y. Now {N, : c € Y\N} is an open cover of the compact Y\N. If {N, : ¢ € F} is a finite
subcover, then (e M € N and (\,cp M. € VI (z) V VI (y). |

Theorem 3. Let X* be an n-point order compactification of X, and C = {V'(a), V! (a) : a € X*}
be the associated collection of trace filters on X. Then X* is a lattice iff both CT = {V1(a) : a € X*}
and Ct = {V!(a) : a € X*} form upper semi-lattices.

Proof: That C! and C! from upper semi-lattices when X is a lattice follows from Lemma 2 and
its dual. Conversely, if C' is an upper semi-lattice, then for any a,b € X*, V1(a) v V1(b) exists and
is equal to an element V' (c) € C! for some ¢ € X*. Now V1(a) < V1(c) < V() implies V1 (a) vV V(c)
exists, whence a <* c¢. Similarly, b <* ¢, so that ¢ is an upper bound of a and b. If d is another
upper bound of @ and b, then the existence of V1(a) Vv V!(d) implies V' (a) < V(d) and V1 (b) < V(d).
Thus, V1 (c) = V1(a) vV V1 (b) < V(d) so that VI (c) vV V}(d) exists, that is, ¢ <* d.

A similar argument shows that the existence of aAb follows from C! being an upper semi-lattice. I

Let X be a bounded T3 s-ordered poset and X* be any Ty-order compactification of X. Then
X* must be bounded. Furthermore, any pair a,b € X* must have a minimal upper bound since
the upper bounds of a and b are given by i(a) N i(b), which is closed since X* is Tj-ordered, and a
theorem of Wallace (Theorem 1 in [5]) guarantees that a non-empty compact Th-ordered space must
have a minimal element. Thus, X* fails to be a lattice iff there exist a,b € X* such that a and b
have two minimal upper bounds, or two maximal lower bounds.
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