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MINIMIZING TIMES BETWEEN BOUNDARY
POINTS ON RECTANGULAR POOLS

TONJA MIICK AND TOM RICHMOND1

Abstract: The well-known “do dogs know calculus” problem

optimizes the travel time from an onshore dog to an offshore

stick, given different running and swimming speeds and a

straight coastline. Here, we optimize the travel time between

two points on the boundary of a rectangular swimming pool,

assuming that running speed along the edge differs from the

swimming speed.

A common calculus problem is to minimize the time from point A to point

B if part of the distance can be covered at a faster speed than the rest. If a

dog is at point A on a straight shoreline and a stick is at point B in the ocean,

the dog may wish to minimize the time from A to B if the running speed r is

greater than the swimming speed s (see “Do Dogs Know Calculus?” [5]). With

a straight boundary between media, the problem is equivalent to Snell’s law in

optics, based on Fermat’s principle that light takes the fastest route from A to

B (see [2, 6]).

An interesting variation is to consider getting from A to B if both points lie

on the boundary of a circular pond. It is an easy exercise in calculus to show

that the optimal path may run around the border from A to B or may swim

directly from A to B, but will never mix running and swimming.

Here, we consider the problem of getting from A to B as quickly as possible

if A and B both lie on the boundary of a rectangular pool. These results are

based on [4]. Some of the results of Section 1 have appeared in [3]. A special

case where A and B lie outside the boundary of a rectangular pool is considered

in [1].

1 The 2-Sided Case

Suppose we are traveling from a point A = (0, a) on an edge of a rectangular

pool [0,∞)× [0,∞) to point B = (b, 0) on an adjacent edge of the pool, where

a and b are positive. By scaling and reflecting, we may assume a ≥ b = 1 and

the swim speed s is 1 unit. Then the running speed r may be thought of as
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the ratio of the running speed to swimming speed. If the running speed r is

less than s = 1, then the all swimming path is shortest and fastest, and thus

optimal. So, we will assume r > s = 1. The most general path from A to B to

consider is one as shown in Figure 1 which runs a bit from A along the poolside

before swimming across a corner of the pool and then running on to B along

the terminal side.

Figure 1: 2-sided rectangle path possibilities.

With the points as labeled in Figure 1, the time to traverse this path is

T (x, y) =
1− x + a− y

r
+
√
x2 + y2,

where (x, y) ∈ [0, 1] × [0, a]. This time will be minimized either at a point on

the boundary of the domain [0, 1]× [0, a] or at a critical point.

The critical points occur where the partial derivates Tx(x, y) and Ty(x, y)

are simultaneously zero, which occurs when x = y. Substituting x = y into

Tx(x, y) = 0 leads to r =
√

2. With r =
√

2, the time function T (x, y) for

x = y becomes T (x, x) = 1+a√
2

, a constant function, so any such path cutting the

corner at 45◦ angles will take the same time. Indeed, this holds for x = y = 0

which corresponds to the all-running path. Thus, the optimal paths occurring

at critical points only occur in the special case r =
√

2, when we may run all

the way or cut across the corner at 45◦ angles.

If r 6=
√

2, the minimal time will correspond to a boundary point on the

domain, and even if r =
√

2, we must compare the value at the critical points

to the values on the boundary of the domain. We will consider the cases 1 <

r <
√

2, r =
√

2, and r >
√

2 separately.
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Referring to Figure 1, it is easy to see that no minimum can occur for

boundary points of form (0, y) for y ∈ (0, a] or of form (x, 0) for x ∈ (0, 1],

for such points correspond to paths which follow the edge of the pool all the

way from A to B but traverse part of an edge swimming, which is slower than

running. This does not exclude the possibility of a minimum at (x, y) = (0, 0),

which corresponds to the all running path.

For points (1, y) for y ∈ [0, a] on the right boundary, we have T (x, y) =

T (1, y) = Tr(y) = a−y
r +

√
1 + y2, and T ′r(y) > 0 if and only if y > 1√

r2−1 .

Thus, Tr(y) decreases until y = 1√
r2−1 and increases after that, so there will

be a minimum along this edge at this critical point if it falls in the domain

y ∈ [0, a], and otherwise the minimum along this edge will occur when y = a,

the all-swimming path. So, if the minimum of T (x, y) occurs on this edge, it is

either T (1, 1√
r2−1 ) corresponding to a run-swim path or T (1, a) corresponding

to the swim path.

We note that the critical point 1√
r2−1 falls in the domain [0, a] iff a ≥ 1√

r2−1

iff r ≥
√

1 + 1
a . Since a ≥ 1, this critical point always occurs in the domain if

r ≥
√

2.

The case for top boundary points of form (x, a) for x ∈ [0, 1] is dual, with

T (x, y) = T (x, a) = Tt(x) = 1−x
r +

√
x2 + a2 decreasing along the edge [0, 1] ×

{a} until x = a√
r2−1 , giving a local minimum along this edge at this critical point

if it is in the domain x ∈ [0, 1], and at x = 1 otherwise, giving the all-swimming

path. So, if the minimum of T (x, y) occurs on this edge, it is either T ( a√
r2−1 , a)

corresponding to a swim-run path, or T (1, a) arising from the swimming path.

We note that the critical point a√
r2−1 falls in the domain [0, 1] iff a ≤

√
r2 − 1

iff r ≥
√
a + 1. Since a ≥ 1, this critical point will not fall in the domain if

r <
√

2.

Thus, there are four possibilities for the minimum for T (x, y) along the

boundary of the domain [0, 1]×[0, a], which we will view and label as functions of

a. The paths giving rise to these minimal times, their associated time functions,

and their domains are given in Figure 2.

The following lemma will help us determine which of these, or the paths

occurring at the critical points for r =
√

2, actually gives the minimum time.

Lemma 1.1 For a ∈ [1,∞),

(a) R(a) ≤ RS(a) if and only if r ≥
√

2, with strict inequality if r >
√

2.

(b) SR(a) ≤ S(a) and equality holds only at a =
√
r2 − 1.

(c) RS(a) ≤ S(a) and equality holds only at a = 1√
r2−1 .
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the Run path the Swim path the Run-Swim path the Swim-Run path

R(a) S(a) RS(a) SR(a)

= 1+a
r =

√
a2 + 1 = 1

r (a +
√
r2 − 1) = 1

r (1 + a
√
r2 − 1)

for a ≥ 1 for a ≥ 1 for a ≥ 1√
r2−1 for a ∈ [1,

√
r2 − 1]

Figure 2: Possible optimal paths on the boundary of the domain and their time

functions.

(d) For a > 1, SR(a) < RS(a) if and only if r <
√

2.

(e) S(a) < R(a) if and only if r <
√

2 and 1−r
√
2−r2

r2−1 < a < 1+r
√
2−r2

r2−1 .

Proof. (a) As functions of a, R and RS are parallel lines with slope 1
r , and

R ≤ RS if and only if R(0) ≤ RS(0), that is, if and only if r ≥
√

2, with strict

inequality if r >
√

2.

(b)-(c) It is easy to verify that the line SR(a) is tangent to the hyperbola

S(a) at a =
√
r2 − 1, and RS(a) is tangent to S(a) at a = 1√

r2−1 . In particular,

since the hyperbola S(a) is concave up, these tangent lines lie below S(a), and

thus the all swim solution S will never be minimal, except possibly at the point

of tangency, if either of the critical points giving rise to the lines RS and SR

actually falls in the domain of T (x, y).

(d) The lines RS and SR have slopes 1
r and

√
r2−1
r respectively, and intersect

at a = 1. Thus RS has the larger slope if and only if 1 >
√
r2 − 1, or equivalently

if and only if r <
√

2. Thus, on the domain a > 1, we have SR < RS iff r <
√

2.

(e) The inequality S(a) < R(a) leads to p(a) = a2(1− r2) + 2a+ 1− r2 > 0.

Now p(a) = 0 at 1±r
√
2−r2

r2−1 if the discriminant is nonnegative, that is, if r <
√

2.

Since r > 1, p(a) is a parabola opening downward, and is either never positive

or only positive between the zeros if r <
√

2.

Theorem 1.2 Suppose A = (0, a) and B = (b, 0) with a ≥ b = 1 are on

adjacent edges of a rectangular pool [0,∞)× [0,∞), where the running speed is
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r > 1 and the swimming speed is 1.

(a) For 1 < r <
√

2, the run-swim path from A to (0, 1√
r2−1 ) to B is optimal

if 1√
r2−1 ≤ a, and the swim path from A to B is optimal if 1√

r2−1 > a.

(b) For r =
√

2, the run path from A to (0, 0) to B is optimal, as are any

paths which swim across a 45◦ corner.

(c) For r >
√

2, the run path from A to (0, 0) to B is optimal.

Proof. For (a), suppose 1 < r <
√

2. Then SR(a) = T ( a√
r2−1 , a) is not valid

since the critical point x = a√
r2−1 falls outside the domain x ∈ [0, 1]. We have

RS(a) < R(a) by Lemma 1.1(a), and RS(a) ≤ S(a) by Lemma 1.1(c), so, if

RS(a) is a valid option, then it gives the minimum. We will show that the

interval a ∈ [1, 1√
r2−1 ) = [1,

√
r2−1
r2−1 ) where RS(a) is not a valid option falls

entirely in the interval ( 1−r
√
2−r2

r2−1 , 1+r
√
2−r2

r2−1 ) where, by Lemma 1.1(e), S(a) <

R(a). For 1 < r <
√

2, we have
√
r2 − 1 < 1 < 1 + r

√
2− r2 so

√
r2−1
r2−1 <

1+r
√
2−r2

r2−1 . Also, 1−r
√
2−r2

r2−1 < 1 is equivalent to f(r) = 2
r <
√

2− r2 + r = g(r),

which holds for r ∈ (1,
√

2) since f and g agree at the endpoints of this interval

and f is concave up, and g is concave down on the interval. Thus, RS(a) =

T (1, 1√
r2−1 ) is the minimum where it is valid, and S(a) is minimum otherwise.

For (b), suppose r =
√

2. Then RS(a) = SR(a) = R(a) ≤ S(a), Thus,

the minimal time corresponding to points (x, y) on the boundary of the domain

[0, 1]×[0, a] of T (x, y) is produced by the all running path (R(a) = T (0, 0)). But

recall that this case r =
√

2 was the only case with interior critical points. They

corresponded to run-swim-run paths cutting any 45◦ corner off the pool. Each

of these requires the same time, so each will give the minimum. The minima

corresponding to RS(a) = T (1, 1√
r2−1 ) and SR(1) involve swimming across a

45◦ corner, and thus are accounted for.

For (c), suppose r >
√

2. Then by Lemma 1.1, we have R(a) < RS(a) ≤
SR(a) ≤ S(a), so the all running path R(a) is minimum.

The discussion above assumed a ≥ b = 1. If we drop the restriction that

b = 1, then scaling by b simply has the effect of moving the potential critical

point y = 1√
r2−1 on the long edge corresponding to RS(a) to y = b√

r2−1 . We

note that the critical point x = a√
r2−1 on the short edge corresponding to SR(a)

was only used in the situation of Theorem 1.2(b) where a = b and r =
√

2, when

it generated the same path as S and RS, so this critical point is not needed.

That is, swimming from the long side then running along the short side will

never be optimal, except in the case where a = b and r =
√

2.
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Furthermore, by interchanging the roles of a and b, we may drop the as-

sumption that a ≥ b. The results for r ≥
√

2 remain the same, but for r <
√

2,

if b > a, then interchanging a and b would give a minimal path from running

A = (0, a) to ( a√
r2−1 , 0) then swim to B = (b, 0) provided a√

r2−1 ≤ b, as seen

in the reflections and relabeling of Figure 3. Solving the latter inequality for a,

we may now summarize the results with no restriction on the relative size of a

and b.

Figure 3: Reflecting over y = x and relabeling for the case a < b.

Corollary 1.3 Suppose A = (0, a) and B = (b, 0) with a, b > 0 are on adjacent

edges of a rectangular pool with vertex at (0, 0), where the running speed is r > 1

and the swimming speed is 1.

(a) For 1 < r <
√

2,

the swim-run path from A to ( a√
r2−1 , 0) to B is optimal if a ≤ b

√
r2 − 1,

the all-swim path form A to B is optimal if b
√
r2 − 1 ≤ a ≤ b√

r2−1 , and

the run-swim path from A to (0, b√
r2−1 ) to B is optimal if a ≥ b√

r2−1 .

(b) For r =
√

2, the all run path from A to (0, 0) to B is optimal, as are any

paths which swim across a 45◦ corner.

(c) For r >
√

2, the all run path from A to (0, 0) to B is optimal.

2 The 3-Sided Case

Suppose now that we wish to find the fastest path from A = (0, a) on the left

side of a rectangular pool [0, b]× [0,∞) to a point C = (b, c) on the right side.

Again, if the swimming rate s is greater than or equal to the running rate r, then

the all swimming path is the shortest path, all traced in the fastest medium,

and thus would be optimal. Thus, we will again assume r > s = 1. We will

classify the paths into to categories: those that contain points on the adjacent

“bottom” edge and those that do not.
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2.1 Paths avoiding the bottom edge. We will first consider those paths

that do not contain points on the bottom edge. If A and C are horizontally

aligned, then the optimal path will be the all-swim path, since any other path

will involve a longer swim time plus some running time. Assume A and C are

not horizontally aligned, so a 6= c. Without loss of generality, we will assume

a > c and further that a − c = 1 Thus, with a possible vertical translation,

the problem reduces to finding the fastest path from A = (0, 1) to C = (b, 0).

We note that a run-swim-run path has the same time as a run-swim path or

a swim-run path with parallel swim path. Thus we only need to consider the

run-swim paths. Running from A = (0, 1) to (0, y) then swimming to C = (b, 0)

has time function

t(y) =
1− y

r
+
√

y2 + b2 for y ∈ [0, 1].

The critical point of t is y = b√
r2−1 , which falls in the domain [0, 1] if and only

if b ≤
√
r2 − 1. Furthermore, t(y) is decreasing on the interval [0, b√

r2−1 ] to the

left of the critical point and increasing to the right, so t(0), corresponding to the

path that crosses the pool perpendicularly, is never minimum, the run-swim path

with time RS(b) = t( b√
r2−1 ) = 1

r (1+ b
√
r2 − 1) is minimum if b ≤

√
r2 − 1, and

the all swim path with time S(b) = t(1) =
√

1 + b2 is minimum if b >
√
r2 − 1.

Lemma 2.1 With a swimming rate of s = 1 and a running rate of r > 1,

among the paths from A = (0, 1) to C = (b, 0) on opposite edges of the rectangle

[0, b]× [0,∞) which do not touch the bottom edge,

(a) If r <
√

1 + b2 (or equivalently, b >
√
r2 − 1), then the all swim path with

time S(b) = t(1) =
√

1 + b2 is optimal.

(b) If r ≥
√

1 + b2 (or equivalently, b ≤
√
r2 − 1), then the run-swim path with

time RS(b) = t( b√
r2−1 ) = 1

r (1 + b
√
r2 − 1) is optimal.

For the general case a > c, without the assumption that a−c = 1, we simply

scale the lengths above, and thus the times, by a− c to get the following:

Corollary 2.2 Among the paths which do not contain points on the bottom

side, the optimal path from (0, a − c) to (b′, 0) on opposite sides of a rectangle

[0, b′]×[0,∞) where b′ = b(a−c), is the path running from (0, a−c) to (0, b′√
r2−1 )

then swimming to (b′, 0), unless b′√
r2−1 > a−c, in which case the path swimming

directly from (0, a−c) to (b′, 0) is optimal. The times for such paths are a−c
r (1+

b
√
r2 − 1) for the run-swim path if b ≤

√
r2 − 1, and (a− c)

√
1 + b2 for the all-

swim path if b ≥
√
r2 − 1.
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Similar scaling is possible on our further results, which we will not state in

such full generality. At the boundaries of piecewise criteria, the optimal path

may arise from two of the functions in Lemma 1.1. For simplicity, we do not

always mention such duplication.

2.2 Paths touching the bottom edge. Now let us consider the paths

from A = (0, a) to C = (b, c) on opposite sides of the rectangle [0, b] × [0,∞)

which include a point B = (x, 0) on the bottom edge. The optimal such path

must be optimal from A to B and from B to C, and each of these is an optimal

path between points on adjacent sides, as considered in the previous section.

If r ≥
√

2, then the all running paths from A to B and from B to C are

optimal, so the all running path will be optimal from A to C. And furthermore,

in the case r =
√

2, the minimum time of a+b+c
r is also achieved by paths which

cut off 45◦ corners.

Now suppose 1 < r <
√

2. We have two cases based on the distance b

between the opposite sides.

Case 1: b > a+c√
r2−1 , or equivalently, r >

√
1 + (a+c

b )2. In this case, the

critical point for the swim-run path from A to the bottom occurs to the left of

the critical point for the swim-run path from C to the bottom, allowing these

paths to connect for an optimal swim-run-swim path. Formally, either (a) the

point B is farther than a√
r2−1 from the left endpoint (0, 0) of the bottom edge,

or (b) B is farther than c√
r2−1 from the right endpoint (b, 0) of the bottom edge.

Suppose (a). Now the fastest path from A to C through B necessarily starts

with the fastest path from A to B, and by the two-sided problem, we know

that this path swims from A to B′ = ( a√
r2−1 , 0) then runs to B. Now this path

passes through B′, which is more than c√
r2−1 from the right endpoint (b, 0) of

the bottom edge, and ends at C. For this path to be optimal from B′ to C,

by the two-sided analysis it must run from B′ to the point B′′ = (b− c√
r2−1 , 0)

which is c√
r2−1 units from (b, 0), then swim to C = (c, b). The case (b) is similar.

Thus, the optimal path is a swim-run-swim path from A to B′ to B′′ to C. The

time for this path is SRS(b) = 1
r (b + (a + c)

√
r2 − 1).

Case 2: b ≤ a+c√
r2−1 , or equivalently, r ≤

√
1 + (a+c

b )2. In this case, the

critical point for the swim-run path from A to the bottom is too far to the right

to allow an optimal swim-run path from C to the bottom to connect with the

optimal swim-run path from A. We will see that in this case, no path containing

a point on the bottom edge is optimal. Formally, we have b− c√
r2−1 < a√

r2−1 .

Now either (a) the included point B on the bottom edge is no more than a√
r2−1

to the left edge, (b) the included point bottom edge point B is no more than
c√

r2−1 to the right edge, or (c) both.
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Suppose only (a) holds. Then applying the two-sided analysis, the optimal

path from A to B is either an all-swim path or a swim-run path arriving at B

by swimming from a point A′ on the left edge. Since (b) does not hold, the

minimal path from C to B is a run-swim path from C to B′ = (b− c√
r2−1 , 0) to

B. But if this path from A to B to B′ to C is minimal, the path from A to B′

must be minimal, and since b − c√
r2−1 < a√

r2−1 , the minimal path from A to

B′ arrives at B′ by swimming. Thus, B = B′. Now the minimal path involves

swimming from a point A′ on the left edge to B = B′ then swimming on to C.

The swimming portion of this path can be done faster by swimming directly

from A′ to C, so this is not optimal.

If only (b) holds, the symmetric argument obtained by interchanging a and

c above shows that running to a point B on the bottom edge is not minimal.

If both (a) and (b) hold, then the minimal paths from A to B and from C

to B both arrive at B by swimming, either in an all-swim path or a run-swim

path from points A′ and C ′ on the left and right edges, respectively. Again,

swimming directly from A′ to C ′ without detouring through the point B is

faster, so this is not optimal. Thus, in Case 2, an optimal path will never hit

the bottom edge.

We summarize our results.

Lemma 2.3 With a running rate of r > 1 and swimming rate s = 1, the

minimal time for a path from A = (a, 0) on one side of a rectangular pool

[0, b] × [0,∞) to a point B on the bottom and on to C = (b, c) on the opposite

side is determined as follows:

(a) if
√

1 + (a+c
b )2 < r <

√
2, the swim-run-swim path with time SRS(b) =

1
r (b + (a + c)

√
r2 − 1) is minimum.

(b) If r =
√

2, the all running path or any path that swims across one or two

45◦ corners is minimum, with time a+b+c
r .

(c) If r >
√

2, the all running path with time a+b+c
r is minimum.

Furthermore, if 1 < r ≤
√

1 + (a+c
b )2, then the optimal path from A to C

will not include any point on the bottom.

2.3 Comparing paths touching or avoiding the bottom edge. Having

optimized paths from A = (0, a) to C = (b, c) which do or do not contain points

B = (x, 0) on the bottom edge, we will now compare all such paths to find the

optimal path from A to C.

We first address the case a = c of horizontally aligned points.
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Theorem 2.4 Suppose A = (0, a) and C = (b, a) are horizontally aligned points

on opposite sides of a rectangular pool [0, b]× [0,∞).

(a) If r ≥
√

2, the all swimming path with time b is optimal iff b ≤ 2a
r−1 iff

r ≤ 1 + 2a
b . Otherwise, the all running with time 2a+b

r is optimal.

(b) If 1 < r <
√

2, the swim-run-swim path with time SRS(b) = 1
r (b +

2a
√
r2 − 1) is optimal iff b ≥ 2a

√
r2−1

r−1 = 2a
√

1 + 2
r−1 . Otherwise, the all swim-

ming path with time b is optimal. In particular, all swimming is optimal if

b < 2a.

Proof. With A and C vertically aligned, the fastest path not hitting the bottom

was the path swimming directly, b units, requiring b units of time. For r ≥
√

2,

the fastest path hitting the bottom edge is all running, which takes 2a+b
r units

of time, so the all-swim path is optimal iff b ≤ 2a+b
r iff b ≤ 2a

r−1 iff r ≤ 1 + 2a
b .

This proves (a).

For r <
√

2, we must compare the swim-run-swim time 1
r (b + 2a

√
r2 − 1)

with the all swim time b. Now 1
r (b + 2a

√
r2 − 1) > b iff b ≥ 2a

√
r2−1

r−1 . However,

the swim-run-swim path is only valid if b > 2a√
r2−1 . But since r > 1, we have

r − 1 < r2 − 1, so 2a
√
r2−1

r−1 > 2a
√
r2−1

r2−1 = 2a√
r2−1 . So, b ≥ 2a

√
r2−1

r−1 implies

b > 2a√
r2−1 , so that the swim-run-swim is indeed valid. This completes the proof

of (b).

Now we consider non-horizontally aligned points A and C. Again we will

assume a > c and scale the problem so that a− c = 1. We will present separate

theorems for the cases 1 < r <
√

2 and r ≥
√

2.

Theorem 2.5 If 1 < r <
√

2 and a− c = 1, the minimal time for a path from

A = (a, 0) to C = (b, c) on opposite sides of a rectangular pool [0, b]× [0,∞) is

determined as follows:

(a) If 1 < r <
√

1 + b2 and b ≤ (2c+1)+2r
√

c(1+c)√
r2−1 , then the all swim path with

time S(b) =
√

1 + b2 is minimum.

(b) If 1 < r <
√

1 + b2 and b ≥ (2c+1)+2r
√

c(1+c)√
r2−1 , then the swim-run-swim path

with time SRS(b) = 1
r (b + (2c + 1)

√
r2 − 1) is minimum.

(c) If r ≥
√

1 + b2, then the run-swim path with time RS(b) = 1
r (1 + b

√
r2 − 1)

is minimum.

Proof. Suppose 1 < r <
√

2. If r <
√

1 + b2, then S(b) is the optimal time

not hitting the bottom and if b > 2c+1√
r2−1 , the path to the bottom with time

SRS(b) may be optimal. The line SRS(b) intersects the concave up hyperbola

S(b) at b =
(2c+1)±2r

√
c(1+c)√

r2−1 , so S(b) is below SRS(b) only between these two
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intersection points. But, SRS(b) is not valid to the left of
(2c+1)−2r

√
c(1+c)√

r2−1 <

2c+1√
r2−1 , so SRS(b) is optimal only for b ≥ (2c+1)+2r

√
c(1+c)√

r2−1 .

For r ≥
√

1 + b2, we only need to compare the optimal time RS(b) not

hitting the bottom and, if b > 2c+1√
r2−1 , the optimal time SRS(b) hitting the

bottom. Now RS(b) and SRS(b) are linear functions of b which intersect at

b = P = 1−(2c+1)
√
r2−1

1−
√
r2−1 . Since RS(b) has the smaller slope, RS(b) < SRS(b)

for all points b to the right of the intersection point P . Letting x =
√
r2 − 1,

and noting c > 0 and 0 <
√
r2 − 1 < 1, we see that if SRS(b) is an option,

then b > 2c+1√
r2−1 > 1√

r2−1 > 1 > 1−(2c+1)x
1−x = P , so b is to the right of P and

RS(b) < SRS(b).

Now we consider the case for r ≥
√

2.

Theorem 2.6 If r ≥
√

2 and a − c = 1, the minimal time for a path from

A = (a, 0) to C = (b, c) on opposite sides of a rectangular pool [0, b]× [0,∞) is

determined as follows:

(a) If
√

2 ≤ r <
√

1 + b2, and b ≤ 2c + 1 = a + c, the all swim path with

time S(b) =
√

1 + b2 is minimum for b between
(2c+1)±r

√
(2c+1)2+1−r2

r2−1 , and the

all run path (possibly with swimming across 45◦ corners if r =
√

2) with time

R(b) = 2c+1+b
r is minimum otherwise.

(b) If
√

2 ≤ r <
√

1 + b2, and b > 2c + 1 = a + c, then the all run path

(possibly with swimming across 45◦ corners if r =
√

2) with time R(b) = 2c+1+b
r

is minimum.

(c) If r >
√

2 and r ≥
√

1 + b2, then the all run path with time R(b) = 2c+1+b
r

is minimum if b > 2c√
r2−1−1 , and the run-swim path with time RS(b) = 1

r (1 +

b
√
r2 − 1) is minimum otherwise.

(d) if r =
√

2 and b ≤ 1 so that r ≥
√

1 + b2, then the run-swim path with time

RS(b) = 1
r (1 + b

√
r2 − 1) is minimum.

Proof. Suppose r ≥
√

2.

If
√

2 ≤ r <
√

1 + b2, then we need to compare the optimal times R(b)

and S(b) for paths hitting and not hitting the bottom, respectvely. Equating

R and S, we find that they intersect when b =
2c+1±r

√
(2c+1)2+1−r2
r2−1 , provided

the discriminant is nonnegative. The curves do not intersect if and only if the

discriminant (2c + 1)2 + 1 − r2 is negative, which occurs precisely when r >√
(2c + 1)2 + 1, which implies r > 2c+1. In this case, R(0) = 2c+1

r < 1 = S(0),

so R(b) is always below S(b) if they do not intersect. If the curves do intersect,

since S is concave up, S(b) is below R(b) only between these two intersection
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points. The curves do intersect iff r <
√

(2c + 1)2 + 1. Thus, the requirement

that r <
√
b2 + 1 implies the curves do not intersect if 2c + 1 < b. This proves

(b). If 2c + 1 ≥ b, then the curves intersect and we have the result of (a).

If r ≥
√

1 + b2, the optimal paths hitting and not hitting the bottom are R(b)

and RS(b). Notice that R(b) and RS(b) are linear functions. If r >
√

2, RS(b)

has the larger slope, so RS(b) will be below R(b) to the left of their intersection

point b = 2c√
r2−1−1 , proving (c). If r =

√
2 then RS(b) < RS(b) + 2c√

2
= R(b),

so RS(b) is minimum, proving (d).

3 The 4-sided case

If we have points A = (0, a) and C = (b, c) on opposite sides of a rectangle

[0, b]× [0, d], we have considered the case of getting from A to C optimally with

the possibility of hitting the bottom edge. Hitting the bottom edge was never

optimal if b ≤ a+c√
r2−1 where a and c were the distances along the vertical edges

from A and C respectively to the bottom. If a′ and c′ are the vertical distances

from A and C to the top, the paths that hit the top reduce to the previously

considered 3-sided case (rotated 180◦). Let us assume a + c < a′ + c′. Then we

should consider where b falls among the points a+c√
r2−1 < a′+c′√

r2−1 . If b is smaller

than both, then neither paths to the top nor the bottom are optimal. If b is only

smaller than a′+c′√
r2−1 , then only the paths to the bottom may be optimal. If b is

larger than both, the the minimal path to the bottom takes 1
r (b+(a+c)

√
r2 − 1)

units of time, which is less than the minimal time 1
r (b + (a′ + c′)

√
r2 − 1) for a

path hitting the top. Thus, in the 4-sided case, we only need to consider paths

reaching the horizontal side—top or bottom—which is “closest” in the sense

that the sum of the vertical distances from that side to A and to C is smallest,

and apply the 3-sided analysis.
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