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Abstract: Given any preorder � on a finite set X, we present an algo-
rithm to construct a partial pseudometric p on X which generates � in the
sense that a � b if and only if p(a, b) ≤ p(a, a). The specialization topology
generated by � agrees with the topology generated by the partial pseudo-
metric p-balls, and consequently any topology on X is generated by a partial
pseudometric.
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In Euclidean geometry and the theory of metric spaces, a point x has no
length or width, and the distance from x to x is zero. In practice, particularly
in computer applications, we must use representations of points which are
not exact, and one approximation (whether a single pixel on a screen, or a
truncated decimal such as 3.14) may represent many different exact values.
The distances between these exact values represented by a single approxima-
tion a suggest the consideration of metrics allowing nonzero distances from
a to a. The self-distance d(a, a) essentially gives a measure of the ambiguity
of the point a. Matthews [5] quantified these notions by introducing partial
metrics which relax the metric restriction that d(x, x) = 0 and adjust the
triangle inequality accordingly.

Definition 1 A partial metric on X is a function p : X ×X → [0,∞) such
that
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(a) p(x, y) ≥ p(x, x) for all x, y ∈ X. (Small self-distances)

(b) p(x, y) = p(y, x) for all x, y ∈ X. (Symmetry)

(c) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X. (Triangle in-
equality)

(d) x = y if and only if p(x, y) = p(x, x) = p(y, y).

In this note, we consider partial pseudometrics on X, defined by Heck-
mann [2] as functions p : X ×X → [0,∞) satisfying conditions (a), (b), and
(c) of Definition 1.

Any partial pseudometric p on X generates a metric d on X defined
d(x, y) = 2p(x, y)−p(x, x)−p(y, y) and a preorder � on X defined by a � b if
and only if p(a, b) ≤ p(a, a). The specialization topology on X generated by �
consists of the �-increasing sets (i.e., sets B for which b ∈ B and b � a imply
a ∈ B) and agrees with the topology τ generated by the basis of open balls
{B(a, r) : a ∈ X, r ∈ (0,∞)} where B(a, r) = {z ∈ X : p(a, z) < p(a, a) + r}
(see [2]). Conversely, the specialization preorder �, defined from τ by a � b
if and only if a ∈ cl{b}, agrees with the partial pseudometric preorder a � b
if and only if p(a, b) ≤ p(a, a).

A pseudometric on X is a partial pseudometric p on X which also satisfies
p(x, x) = 0 for every x ∈ X. Thus, a pseudometric is a metric without the
condition that p(x, y) = 0 implies x = y. Not every topology on a finite set is
generated by a pseudometric. Erné and Stege note in [1] that the following are
equivalent for a topology τ on a finite set X: (1) (X, τ) is pseudometrizable,
(2) (X, τ) is regular, (3) (X, τ) is completely regular, (4) the specialization
order � generated by τ is an equivalence relation.

Dropping the small self-distances condition (a) from the definition of a
partial metric or partial pseudometric gives, respectively, a weak partial met-
ric or weak partial pseudometric. Heckmann shows that any topology arising
from a weak partial (pseudo)metric also arises from a partial (pseudo)metric.

A partial quasimetric is obtained by dropping the symmetry condition of
a partial metric and replacing (a) in Definition 1 by (a′): p(x, x) ≤ p(x, y)
and p(x, x) ≤ p(y, x) for all x, y ∈ X, and replacing (d) by (d′): x = y if and
only if (p(x, x) = p(x, y) and p(y, y) = p(y, x)) for any x, y ∈ X. Topologies
arising from partial quasimetrics are investigated in [4].

Because the range of a (partial-, pseudo-, quasi-) metric d is [0,∞) and
because 0 < r < s implies B(a, r) ⊆ B(a, s), the topology generated by
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d-balls must be first countable. Consequently, there is no hope to represent
every topology on an arbitrary set X by a partial metric with range [0,∞).
However, it is shown in [3] that every topology is generated by a partial
metric if we allow the range to be a value quantale.

We will show that every finite topology arises from a partial pseudomet-
ric. We start by considering topologies on a finite set X = {x1, . . . , xn}.
Recall that any such topology is characterized by its specialization preorder.
We will present an algorithm which shows that any preorder on a finite set
X is determined by an appropriately constructed partial pseudometric. Be-
cause the ball topology defined by the partial pseudometric agrees with the
specialization topology of the preorder determined by the topology, this will
give the desired result.

Before presenting the algorithm, we give an example which provides the
motivation for the algorithm. For brevity, we will denote p(xi, xj) by ij, and
we will specify the distance function p by defining the entries on and below
the diagonal of the symmetric matrix whose (i, j)-entry is ij = p(xi, xj).

Example 2 Consider the preordered set {x1, x2, x3, x4} with x3 < x2 < x1

and x4 < x1, as shown.

x3

x2

x1
x4��� ��

We want p(xi, xj) = ij ≤ ii = p(xi, xi) if and only if xi � xj. Because
each point xj which is above xi in the preorder provides a distance ij ≤ ii, to
insure that all such distances ij can be fitted under ii using integer values,
we will take ii to be the number of elements strictly greater than xi. This
gives the diagonal entries of the p matrix, as shown in Figure 1a.

Now in row i, we want ij ≤ ii if and only if xi � xj, so we will slide
across the row making a notation “≤ ii” in the ij slot if xi � xj and making
a notation “> ii” in the ij slot if xi �� xj. To restrict our work to the lower
left half of the symmetric matrix, we will reflect the notes in the ik entries
around the diagonal if k > i. Thus, for example, as we slide across row 2,
we note that x2 � x1, so we want the (2,1)-entry to be less than or equal to
the (2,2)-entry, which is 1, so we record “≤ 1” in the (2,1) position. Since
x2 �� x3 and x2 �� x4, we want the (2,3) entry and the (2,4) entry to be
“> 1” and we mark this information as shown, in the symmetric (3,2)- and
(4,2)-entries below the diagonal, as shown in Figure 1a.

Repeating this for the other rows, we arrive at the matrix shown in Fig-
ure 1b. Note that each off-diagonal entry will have two notations as marked.
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x1 x2 x3 x4

x1 0
x2 ≤ 1 1
x3 > 1 2
x4 > 1 1

Figure 1a.

x1 x2 x3 x4

x1 0
x2 (> 0,≤ 1) 1
x3 (> 0,≤ 2) (> 1,≤ 2) 2
x4 (> 0,≤ 1) (> 1, > 1) (> 2, > 1) 1

Figure 1b.

x1 x2 x3 x4

x1 0 1 2 1
x2 1 1 2 2
x3 2 2 2 3
x4 1 2 3 1

Figure 1c.
Now we consider the notations in each entry below the diagonal. If the

notation in an entry has form (> a, > b), we take the entry to be max{a, b}+1.
Entries of form (> a,≤ b) will occur, as we will see, only if b > a, so we will
assign such an entry the value of b. Entries of form (≤ a,≤ b) will occur only
if a = b (and the associated points xa, xb satisfy xa � xb, xb � xa), and we
assign this value to the entry. These rules give the matrix shown in Figure 1c
for our example. Note that the diagonal entry is the minimum entry of each
row, so the function p satisfies the small self-distances condition.

It remains to verify that the distance function p so constructed satisfies
the triangle inequality. We note that for small matrices, the triangle inequal-
ity can be confirmed manually by fixing an entry ij on or below the diagonal,
then sliding along the diagonal entries kk, mentally forming a rectangle with
opposite corners ij and kk, and ik and kj, and confirming that the sum of
the opposite corners ik and kj is not less than the sum of the other opposite
corners ij and kk. This must be repeated for each entry ij on or below the
diagonal. The details of this example are left to the reader; the general case
is shown below.

We now state the general algorithm.

Theorem 3 Any preorder � on a finite set X = {x1, x2, . . . , xn} is given by
xi � xj if and only if p(xi, xj) ≤ p(xi, xi) where p : X × X → {0, 1, 2, . . .} is
the partial pseudometric p(xi, xj) = ij defined as follows:

For i ∈ {1, 2, . . . , n}, take ii = |{a ∈ X : xi ≺ a}|.
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For distinct i, j ∈ {1, 2, . . . , n}, take

ij =


ii if xi � xj

jj if xj � xi

max{ii, jj} + 1 if xi �� xj and xj �� xi (i.e., if xi‖xj)

Note that this definition is well-defined and symmetric, for if xi � xj and
xj � xi, then ij = ii = |{a ∈ X : xi ≺ a}| = |{a ∈ X : xj ≺ a}| = jj = ji.

Furthermore, this definition meets the needed requirement that ij ≤ ii if
and only if xi � xj:
If xi � xj, then ij = ii.
If xi �� xj but xj � xi, then ij = ji = jj = |{a ∈ X : xj ≺ a}| > |{a ∈ X :
xi ≺ a}| = ii.
If xi �� xj and xj �� xi, then ij = max{ii, jj} + 1 > ii.

Also observe that the definition implies that ii ≤ ij for any i, j ∈
{1, 2, . . . , n}. That is, the function p satisfies the small self-distances condi-
tion of Definition 1.

Thus, the proof of Theorem 3 now depends only on the the verification
that the function p(xi, xj) = ij defined here satisfies the triangle inequality.
First, we list the following immediate observations for future reference. In
all that follows, we adopt the notation of Theorem 3.

Proposition 4 (a) (xi � xj and xj � xi) ⇒ ii = jj, and consequently, im =
jm ∀m ∈ {1, 2, . . . , n}.

(b) (xi � xj and xj �� xi) ⇒ jj < ii = ij.

(c) (xi �� xj and xj �� xi) ⇒ ii < ij and jj < ij.

(d) xi � xj ⇒ jj ≤ ii = ij.

(e) xi �� xj ⇒ jj ≤ ij.

For any distance function d on X satisfying d(x, x) = 0 for all x ∈ X, the
triangle inequality holds trivially for three points a, b, c if any two of them
are equal. We present a similar result in Proposition 5 below. Recall that in
a preordered set (X,�), we may have distinct points a, b ∈ X with a � b and
b � a. Defining a ∼ b if and only if (a � b and b � a) gives an equivalence
relation ∼ on X, and we obtain a partial order ≤ on the collection X/∼ of
all ∼-equivalence classes by taking [a] ≤ [b] if and only if a � b.
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We note that if xi ∼ xj, then the ith and jth rows of the matrix [ij] are
equal, as are the ith and jth columns.

Proposition 5 Suppose p is as defined in Theorem 3. Then p satisfies the
triangle inequality for three points xi, xj, xk ∈ X if any two of them are ∼-
equivalent.

Proof. If xi ∼ xk, then by Proposition 4(a), im = mi = km = mk =
kk ∀m ∈ {1, 2, . . . , n}, and the desired inequality ij + kk ≤ ik + kj is
equivalent to kk + kk ≤ kk + kk, which is true. Replacing i by j proves the
case xj ∼ xk. Finally, suppose xi ∼ xj. Then by Proposition 4(a), im =
jm = mj = ii ∀m ∈ {1, 2, . . . , n}, and the desired inequality ij+kk ≤ ik+kj
is equivalent to ii + kk ≤ ii + ii, or kk ≤ ii. If xi � xk, Proposition 4(d)
gives kk ≤ ii, as needed. If xi �� xk, Proposition 4(e) gives kk ≤ ik = ii, as
needed.

We now prove that the function p defined in Theorem 3 satisfies the
triangle inequality ij + kk ≤ ik + jk ∀i, j, k ∈ {1, 2, . . . , n}, assuming that
no two of the points xi, xj, xk are ∼-equivalent. The proof is divided into
cases based on the relative position of xi, xj, and xk in the preordered set X.
By the previous proposition, the triangle inequality holds if antisymmetry
fails among the preordered set {xi, xj, xk}, so now we need only consider
partially ordered configurations of the three points.

To insure that we cover all cases, let us itemize the possible partial orders
on three elements xi, xj, xk. We call a partial order on three elements a
“Type n” partial order if there are n related pairs. Referring to Figure 2, we
see that there is one Type 0 partial order on three elements, and six each of
Types 1, 2, and 3.

���
Type 3

�� �
�� �

����
Type 2

� ��
Type 1

� � �
Type 0

Figure 2.

We present some cases below, and afterwards, we will show that each of
the 19 configurations mentioned above has been verified.

Note that the triangle inequality ij + kk ≤ ik + kj is symmetric in i
and j: interchanging i and j gives ji + kk ≤ jk + ki, which is equivalent
to ij + kk ≤ ik + kj. The number of essentially different partially ordered
configurations of xi, xj, xk is reduced by this symmetry.
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Case 1: (xi is minimum). xi � xj and xi � xk. From Proposition 4(b),
ij = ii = ik. Now whether xj � xk or xj �� xk, Propositions 4(d) and (e)
imply kk ≤ kj. Thus, ij + kk = ik + kk ≤ ik + kj, as needed.

Case 2: (xk is minimum). xk � xi and xk � xj. Proposition 4(b) gives
ik = kk > ii, so kk ≥ ii + 1, and jk = kk > jj, so kk ≥ jj + 1. If xi � xj,
then ij = ii < kk. If xi‖xj, then ij = max{ii + 1, jj + 1} ≤ kk. If xj � xi,
then ij = jj, and we know jj < kk, and thus ij ≤ kk regardless of the
relation between xi and xj. Now ij + kk ≤ kk + kk = ik + jk, as needed.

Case 3: (xi is maximum, xj‖xk). xj � xi, xk � xi, xj‖xk. By Propo-
sition 4(b), ij = jj and ki = kk, and by Proposition 4(c), jk > jj. Thus,
ij + kk = jj + ki < jk + ik, as needed.

Case 4: (xk is maximum, xi‖xj). xi � xk, xj � xk, xi‖xj. By
Proposition 4(b), ik = ii > kk, so 1 + kk ≤ ik, and jk = jj > kk, so
1 + kk ≤ kj. Since xi‖xj, ij = max{ii + 1, jj + 1}. If ij = ii + 1, then
ij + kk = ii + 1 + kk = ik + 1 + kk ≤ ik + kj, as needed. If ij = jj + 1, then
ij + kk = jj + 1 + kk = jk + 1 + kk ≤ jk + ik, as needed.

Case 5: (xi unrelated to xj and xk; xj � xk). xi‖xj, xi‖xk, xj � xk.
Since xj � xk, we have kk < jj = jk. First suppose ii ≥ jj. Then
ij = max{ii, jj} + 1 = ii + 1. Now ik = max{ii, kk} + 1, and ii ≥ jj > kk
implies ik = ii+1. Thus, ij+kk = ii+1+kk = ik+kk ≤ ik+jk, as needed.
Next suppose ii < jj, so that ii + 1 ≤ jj and ij = max{ii, jj} + 1 = jj + 1.
Now xj � xk implies kk +1 ≤ jj = jk, and xi‖xk implies kk +1 ≤ ik. Thus,
ij + kk = jj + 1 + kk = jk + 1 + kk ≤ jk + ik, as needed.

Case 6: (xi unrelated to xj and xk; xk � xj). xi‖xj, xi‖xk, xk � xj.
From xk � xj, we have kk = jk > jj, and from xi‖xk we have ii + 1 ≤ ik.
First suppose ii ≥ jj so that ij = max{ii, jj} + 1 = ii + 1. Then ij + kk =
ii + 1 + kk = ii + 1 + jk ≤ ik + jk, as needed. Next suppose ii < jj so that
ij = jj + 1 and kk > jj > ii, and thus ik = max{ii, kk}+ 1 = kk + 1. Then
ij + kk = jj + 1 + kk = jj + ik < jk + ik, as needed.

Case 7: (xk unrelated to xi and xj). xi‖xk, xj‖xk. Then ik > ii, ik > kk,
jk > jj, and jk > kk. If xi � xj, then ij = ii so ij + kk = ii+ kk < ik + jk,
as needed. If xj � xi, interchanging i and j in the previous sentence
gives the desired inequality. Finally, suppose xi‖xj, so that {xi, xj, xk} is
an antichain in (X,�). Then ij = max{ii, jj} + 1. If ij = ii + 1, then
ij+kk = ii+1+kk < ik+1+kk ≤ ik+kj since kj = max{kk, jj}+1 ≥ kk+1.
If ij = jj + 1, then ij + kk = jj + 1 + kk < jk + 1 + kk ≤ jk + ik since
ik = max{ii, kk} + 1 ≥ kk + 1.
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Now we confirm that these cases cover all the situations. The one Type 0
partial order is covered by Case 7. The six Type 1 partial orders are covered
by Cases 5, 6, and 7 and their (i, j)-symmetric forms. The three Type 2
partial orders having a maximum element are covered by Case 3, its (i, j)-
symmetric form, and Case 4. The three Type 2 partial orders having a min-
imum element are covered by Case 1, its (i, j)-symmetric form, and Case 2.
There are six Type 3 partial orders (chains). Case 1 and its (i, j)-symmetric
form cover the four having xi or xj as minimum element, and Case 2 covers
the two having xk as minimum element. This completes the proof of Theo-
rem 3.

We observe that, as expected, many partial pseudometrics may generate
the same topology. For example, for a chain x1 > x2 > · · · > xn, we may
assign the natural (asymmetric) signed distances q(xi, xj) = j − i between
points, then add constants to the rows of [ij] to eliminate negative entries
and create a symmetric matrix. This will give a partial pseudometric with
ij = d(xi, xj) = i + j − 2.

We note that Theorem 3 remains valid if we redefine ii to be the number
of elements strictly greater than [xi] in (X/∼,≤), where X/∼ is the set of
equivalence classes determined by the equivalence relation a ∼ b if and only
if a � b and b � a, and ≤ is the partial order on X/∼ defined by [a] ≤ [b] if
and only if a � b. With ii so redefined, the partial pseudometric p defined
by Theorem 3 is minimal among the integer-valued partial pseudometrics
generating the same topology: if d is an integer-valued partial pseudometric
on X which generates the same topology as p, then p(xi, xj) ≤ d(xi, xj) for
any xi, xj ∈ X.

Finally, if p is a partial pseudometric on X, a ∈ X, and if Ba ∩ X =
∅, we may define a partial pseudometric on X ∪ Ba by p′(x, y) = p(x, y),
p′(x, b) = p′(b, x) = p(x, a), and p′(b, b) = p(a, a) for any x, y ∈ X and any
b ∈ Ba. Then in the preorder induced by p′, we have a � b and b � a for
any b ∈ Ba, so the topology on X ∪ Ba is simply the topology on X with
the set Ba added to every neighborhood of a. Using this idea, the results
for topologies on finite sets can be extended to any finite topology on an
arbitrary set. Specifically, if τ is a finite topology on X, define a ≈ b if and
only if

⋂{U ∈ τ : a ∈ U} =
⋂{U ∈ τ : b ∈ U}, find the partial pseudometric

p generating the topology on the finite space (X/≈, τ/≈), and append to
each point [a] ∈ X/≈ the set Ba = [a] \ {a} as described above to get a
partial pseudometric p′ on X which generates τ .
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