Every finite topology is generated by a partial pseudometric

Aslı Güldürdek and Tom Richmond
Department of Mathematics
Western Kentucky University
1906 College Heights Blvd. \#11078
Bowling Green, KY 42101-1078
tom.richmond@wku.edu

November 28, 2005

Abstract

Given any preorder \preceq on a finite set X, we present an algorithm to construct a partial pseudometric p on X which generates \preceq in the sense that $a \preceq b$ if and only if $p(a, b) \leq p(a, a)$. The specialization topology generated by \preceq agrees with the topology generated by the partial pseudometric p-balls, and consequently any topology on X is generated by a partial pseudometric.

AMS Subject classification: 54A05, 06A99
Key Words and Phrases: partial metric, partial pseudometric, specialization topology, specialization order

In Euclidean geometry and the theory of metric spaces, a point x has no length or width, and the distance from x to x is zero. In practice, particularly in computer applications, we must use representations of points which are not exact, and one approximation (whether a single pixel on a screen, or a truncated decimal such as 3.14) may represent many different exact values. The distances between these exact values represented by a single approximation a suggest the consideration of metrics allowing nonzero distances from a to a. The self-distance $d(a, a)$ essentially gives a measure of the ambiguity of the point a. Matthews [5] quantified these notions by introducing partial metrics which relax the metric restriction that $d(x, x)=0$ and adjust the triangle inequality accordingly.

Definition $1 A$ partial metric on X is a function $p: X \times X \rightarrow[0, \infty)$ such that
(a) $p(x, y) \geq p(x, x)$ for all $x, y \in X$. (Small self-distances)
(b) $p(x, y)=p(y, x)$ for all $x, y \in X$. (Symmetry)
(c) $p(x, z)+p(y, y) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$. (Triangle inequality)
(d) $x=y$ if and only if $p(x, y)=p(x, x)=p(y, y)$.

In this note, we consider partial pseudometrics on X, defined by Heckmann [2] as functions $p: X \times X \rightarrow[0, \infty)$ satisfying conditions (a), (b), and (c) of Definition 1.

Any partial pseudometric p on X generates a metric d on X defined $d(x, y)=2 p(x, y)-p(x, x)-p(y, y)$ and a preorder \preceq on X defined by $a \preceq b$ if and only if $p(a, b) \leq p(a, a)$. The specialization topology on X generated by \preceq consists of the \preceq-increasing sets (i.e., sets B for which $b \in B$ and $b \preceq a$ imply $a \in B)$ and agrees with the topology τ generated by the basis of open balls $\{B(a, r): a \in X, r \in(0, \infty)\}$ where $B(a, r)=\{z \in X: p(a, z)<p(a, a)+r\}$ (see [2]). Conversely, the specialization preorder \preceq, defined from τ by $a \preceq b$ if and only if $a \in \operatorname{cl}\{b\}$, agrees with the partial pseudometric preorder $a \preceq b$ if and only if $p(a, b) \leq p(a, a)$.

A pseudometric on X is a partial pseudometric p on X which also satisfies $p(x, x)=0$ for every $x \in X$. Thus, a pseudometric is a metric without the condition that $p(x, y)=0$ implies $x=y$. Not every topology on a finite set is generated by a pseudometric. Erné and Stege note in [1] that the following are equivalent for a topology τ on a finite set X : (1) (X, τ) is pseudometrizable, (2) (X, τ) is regular, (3) (X, τ) is completely regular, (4) the specialization order \preceq generated by τ is an equivalence relation.

Dropping the small self-distances condition (a) from the definition of a partial metric or partial pseudometric gives, respectively, a weak partial metric or weak partial pseudometric. Heckmann shows that any topology arising from a weak partial (pseudo)metric also arises from a partial (pseudo)metric.

A partial quasimetric is obtained by dropping the symmetry condition of a partial metric and replacing (a) in Definition 1 by (a^{\prime}): $p(x, x) \leq p(x, y)$ and $p(x, x) \leq p(y, x)$ for all $x, y \in X$, and replacing (d) by ($\left.\mathrm{d}^{\prime}\right): x=y$ if and only if $(p(x, x)=p(x, y)$ and $p(y, y)=p(y, x))$ for any $x, y \in X$. Topologies arising from partial quasimetrics are investigated in [4].

Because the range of a (partial-, pseudo-, quasi-) metric d is $[0, \infty)$ and because $0<r<s$ implies $B(a, r) \subseteq B(a, s)$, the topology generated by
d-balls must be first countable. Consequently, there is no hope to represent every topology on an arbitrary set X by a partial metric with range $[0, \infty)$. However, it is shown in [3] that every topology is generated by a partial metric if we allow the range to be a value quantale.

We will show that every finite topology arises from a partial pseudometric. We start by considering topologies on a finite set $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Recall that any such topology is characterized by its specialization preorder. We will present an algorithm which shows that any preorder on a finite set X is determined by an appropriately constructed partial pseudometric. Because the ball topology defined by the partial pseudometric agrees with the specialization topology of the preorder determined by the topology, this will give the desired result.

Before presenting the algorithm, we give an example which provides the motivation for the algorithm. For brevity, we will denote $p\left(x_{i}, x_{j}\right)$ by $i j$, and we will specify the distance function p by defining the entries on and below the diagonal of the symmetric matrix whose (i, j)-entry is $i j=p\left(x_{i}, x_{j}\right)$.

Example 2 Consider the preordered set $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with $x_{3}<x_{2}<x_{1}$ and $x_{4}<x_{1}$, as shown.
$\begin{aligned} & x_{1} \\ & x_{2} \\ & x_{3}\end{aligned} . \quad x_{4}$
We want $p\left(x_{i}, x_{j}\right)=i j \leq i i=p\left(x_{i}, x_{i}\right)$ if and only if $x_{i} \preceq x_{j}$. Because each point x_{j} which is above x_{i} in the preorder provides a distance $i j \leq i i$, to insure that all such distances $i j$ can be fitted under $i i$ using integer values, we will take $i i$ to be the number of elements strictly greater than x_{i}. This gives the diagonal entries of the p matrix, as shown in Figure 1a.

Now in row i, we want $i j \leq i i$ if and only if $x_{i} \preceq x_{j}$, so we will slide across the row making a notation " $\leq i i$ " in the $i j$ slot if $x_{i} \preceq x_{j}$ and making a notation " $>i i$ " in the $i j$ slot if $x_{i} \npreceq x_{j}$. To restrict our work to the lower left half of the symmetric matrix, we will reflect the notes in the $i k$ entries around the diagonal if $k>i$. Thus, for example, as we slide across row 2 , we note that $x_{2} \preceq x_{1}$, so we want the (2,1)-entry to be less than or equal to the $(2,2)$-entry, which is 1 , so we record " ≤ 1 " in the $(2,1)$ position. Since $x_{2} \npreceq x_{3}$ and $x_{2} \npreceq x_{4}$, we want the $(2,3)$ entry and the $(2,4)$ entry to be " >1 " and we mark this information as shown, in the symmetric (3,2)- and (4,2)-entries below the diagonal, as shown in Figure 1a.

Repeating this for the other rows, we arrive at the matrix shown in Figure 1b. Note that each off-diagonal entry will have two notations as marked.

| | x_{1} | x_{2} | x_{3} | x_{4} | | x_{1} | x_{2} | x_{3} | x_{4} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{1} | 0 | | | | | x_{1} | 0 | | | |
| x_{2} | ≤ 1 | 1 | | | | x_{2} | $(>0, \leq 1)$ | 1 | | |
| x_{3} | | >1 | 2 | | | x_{3} | $(>0, \leq 2)$ | $(>1, \leq 2)$ | 2 | |
| x_{4} | | >1 | | 1 | | x_{4} | $(>0, \leq 1)$ | $(>1,>1)$ | $(>2,>1)$ | 1 |

Figure 1a.
Figure 1b.

	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	0	1	2	1
x_{2}	1	1	2	2
x_{3}	2	2	2	3
x_{4}	1	2	3	1

Figure 1c.
Now we consider the notations in each entry below the diagonal. If the notation in an entry has form $(>a,>b)$, we take the entry to be $\max \{a, b\}+1$. Entries of form ($>a, \leq b$) will occur, as we will see, only if $b>a$, so we will assign such an entry the value of b. Entries of form $(\leq a, \leq b)$ will occur only if $a=b$ (and the associated points x_{a}, x_{b} satisfy $x_{a} \preceq x_{b}, x_{b} \preceq x_{a}$), and we assign this value to the entry. These rules give the matrix shown in Figure 1c for our example. Note that the diagonal entry is the minimum entry of each row, so the function p satisfies the small self-distances condition.

It remains to verify that the distance function p so constructed satisfies the triangle inequality. We note that for small matrices, the triangle inequality can be confirmed manually by fixing an entry $i j$ on or below the diagonal, then sliding along the diagonal entries $k k$, mentally forming a rectangle with opposite corners $i j$ and $k k$, and $i k$ and $k j$, and confirming that the sum of the opposite corners $i k$ and $k j$ is not less than the sum of the other opposite corners $i j$ and $k k$. This must be repeated for each entry $i j$ on or below the diagonal. The details of this example are left to the reader; the general case is shown below. -

We now state the general algorithm.
Theorem 3 Any preorder \preceq on a finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is given by $x_{i} \preceq x_{j}$ if and only if $p\left(x_{i}, x_{j}\right) \leq p\left(x_{i}, x_{i}\right)$ where $p: X \times X \rightarrow\{0,1,2, \ldots\}$ is the partial pseudometric $p\left(x_{i}, x_{j}\right)=i j$ defined as follows:

For $i \in\{1,2, \ldots, n\}$, take $i i=\left|\left\{a \in X: x_{i} \prec a\right\}\right|$.

For distinct $i, j \in\{1,2, \ldots, n\}$, take

$$
i j= \begin{cases}\text { ii } & \text { if } x_{i} \preceq x_{j} \\ j j & \text { if } x_{j} \preceq x_{i} \\ \max \{i i, j j\}+1 & \text { if } \left.x_{i} \npreceq x_{j} \text { and } x_{j} \npreceq x_{i} \text { (i.e., if } x_{i} \| x_{j}\right)\end{cases}
$$

Note that this definition is well-defined and symmetric, for if $x_{i} \preceq x_{j}$ and $x_{j} \preceq x_{i}$, then $i j=i i=\left|\left\{a \in X: x_{i} \prec a\right\}\right|=\left|\left\{a \in X: x_{j} \prec a\right\}\right|=j j=j i$.

Furthermore, this definition meets the needed requirement that $i j \leq i i$ if and only if $x_{i} \preceq x_{j}$:
If $x_{i} \preceq x_{j}$, then $i j=i$.
If $x_{i} \npreceq x_{j}$ but $x_{j} \preceq x_{i}$, then $i j=j i=j j=\left|\left\{a \in X: x_{j} \prec a\right\}\right|>\mid\{a \in X:$
$\left.x_{i} \prec a\right\} \mid=i i$.
If $x_{i} \npreceq x_{j}$ and $x_{j} \npreceq x_{i}$, then $i j=\max \{i i, j j\}+1>i i$.
Also observe that the definition implies that $i i \leq i j$ for any $i, j \in$ $\{1,2, \ldots, n\}$. That is, the function p satisfies the small self-distances condition of Definition 1.

Thus, the proof of Theorem 3 now depends only on the the verification that the function $p\left(x_{i}, x_{j}\right)=i j$ defined here satisfies the triangle inequality. First, we list the following immediate observations for future reference. In all that follows, we adopt the notation of Theorem 3.

Proposition 4 (a) $\left(x_{i} \preceq x_{j}\right.$ and $\left.x_{j} \preceq x_{i}\right) \Rightarrow i i=j j$, and consequently, $i m=$ $j m \forall m \in\{1,2, \ldots, n\}$.
(b) $\left(x_{i} \preceq x_{j}\right.$ and $\left.x_{j} \npreceq x_{i}\right) \Rightarrow j j<i i=i j$.
(c) $\left(x_{i} \npreceq x_{j}\right.$ and $\left.x_{j} \npreceq x_{i}\right) \Rightarrow i i<i j$ and $j j<i j$.
(d) $x_{i} \preceq x_{j} \Rightarrow j j \leq i i=i j$.
(e) $x_{i} \npreceq x_{j} \Rightarrow j j \leq i j$.

For any distance function d on X satisfying $d(x, x)=0$ for all $x \in X$, the triangle inequality holds trivially for three points a, b, c if any two of them are equal. We present a similar result in Proposition 5 below. Recall that in a preordered set (X, \preceq), we may have distinct points $a, b \in X$ with $a \preceq b$ and $b \preceq a$. Defining $a \sim b$ if and only if ($a \preceq b$ and $b \preceq a$) gives an equivalence relation \sim on X, and we obtain a partial order \leq on the collection X / \sim of all \sim-equivalence classes by taking $[a] \leq[b]$ if and only if $a \preceq b$.

We note that if $x_{i} \sim x_{j}$, then the $i^{\text {th }}$ and $j^{\text {th }}$ rows of the matrix $[i j]$ are equal, as are the $i^{\text {th }}$ and $j^{t h}$ columns.

Proposition 5 Suppose p is as defined in Theorem 3. Then p satisfies the triangle inequality for three points $x_{i}, x_{j}, x_{k} \in X$ if any two of them are $\sim-$ equivalent.

Proof. If $x_{i} \sim x_{k}$, then by Proposition 4(a), $i m=m i=k m=m k=$ $k k \forall m \in\{1,2, \ldots, n\}$, and the desired inequality $i j+k k \leq i k+k j$ is equivalent to $k k+k k \leq k k+k k$, which is true. Replacing i by j proves the case $x_{j} \sim x_{k}$. Finally, suppose $x_{i} \sim x_{j}$. Then by Proposition 4(a), $i m=$ $j m=m j=i i \forall m \in\{1,2, \ldots, n\}$, and the desired inequality $i j+k k \leq i k+k j$ is equivalent to $i i+k k \leq i i+i i$, or $k k \leq i i$. If $x_{i} \preceq x_{k}$, Proposition 4(d) gives $k k \leq i i$, as needed. If $x_{i} \npreceq x_{k}$, Proposition 4(e) gives $k k \leq i k=i i$, as needed.

We now prove that the function p defined in Theorem 3 satisfies the triangle inequality $i j+k k \leq i k+j k \forall i, j, k \in\{1,2, \ldots, n\}$, assuming that no two of the points x_{i}, x_{j}, x_{k} are \sim-equivalent. The proof is divided into cases based on the relative position of x_{i}, x_{j}, and x_{k} in the preordered set X. By the previous proposition, the triangle inequality holds if antisymmetry fails among the preordered set $\left\{x_{i}, x_{j}, x_{k}\right\}$, so now we need only consider partially ordered configurations of the three points.

To insure that we cover all cases, let us itemize the possible partial orders on three elements x_{i}, x_{j}, x_{k}. We call a partial order on three elements a "Type n " partial order if there are n related pairs. Referring to Figure 2, we see that there is one Type 0 partial order on three elements, and six each of Types 1, 2, and 3.

Type 0

Type 1

Type 2

Type 3

Figure 2.
We present some cases below, and afterwards, we will show that each of the 19 configurations mentioned above has been verified.

Note that the triangle inequality $i j+k k \leq i k+k j$ is symmetric in i and j : interchanging i and j gives $j i+k k \leq j k+k i$, which is equivalent to $i j+k k \leq i k+k j$. The number of essentially different partially ordered configurations of x_{i}, x_{j}, x_{k} is reduced by this symmetry.

Case 1: $\left(x_{i}\right.$ is minimum). $x_{i} \preceq x_{j}$ and $x_{i} \preceq x_{k}$. From Proposition 4(b), $i j=i i=i k$. Now whether $x_{j} \preceq x_{k}$ or $x_{j} \npreceq x_{k}$, Propositions 4(d) and (e) imply $k k \leq k j$. Thus, $i j+k k=i k+k k \leq i k+k j$, as needed.

Case 2: $\left(x_{k}\right.$ is minimum). $x_{k} \preceq x_{i}$ and $x_{k} \preceq x_{j}$. Proposition 4(b) gives $i k=k k>i i$, so $k k \geq i i+1$, and $j k=k k>j j$, so $k k \geq j j+1$. If $x_{i} \preceq x_{j}$, then $i j=i i<k k$. If $x_{i} \| x_{j}$, then $i j=\max \{i i+1, j j+1\} \leq k k$. If $x_{j} \preceq x_{i}$, then $i j=j j$, and we know $j j<k k$, and thus $i j \leq k k$ regardless of the relation between x_{i} and x_{j}. Now $i j+k k \leq k k+k k=i k+j k$, as needed.

Case 3: $\left(x_{i}\right.$ is maximum, $\left.x_{j} \| x_{k}\right) . x_{j} \preceq x_{i}, x_{k} \preceq x_{i}, x_{j} \| x_{k}$. By Proposition 4(b), $i j=j j$ and $k i=k k$, and by Proposition 4(c), $j k>j j$. Thus, $i j+k k=j j+k i<j k+i k$, as needed.

Case 4: $\left(x_{k}\right.$ is maximum, $\left.x_{i} \| x_{j}\right) . x_{i} \preceq x_{k}, x_{j} \preceq x_{k}, x_{i} \| x_{j}$. By Proposition 4(b), $i k=i i>k k$, so $1+k k \leq i k$, and $j k=j j>k k$, so $1+k k \leq k j$. Since $x_{i} \| x_{j}, i j=\max \{i i+1, j j+1\}$. If $i j=i i+1$, then $i j+k k=i i+1+k k=i k+1+k k \leq i k+k j$, as needed. If $i j=j j+1$, then $i j+k k=j j+1+k k=j k+1+k k \leq j k+i k$, as needed.

Case 5: $\left(x_{i}\right.$ unrelated to x_{j} and $\left.x_{k} ; x_{j} \preceq x_{k}\right) . x_{i}\left\|x_{j}, x_{i}\right\| x_{k}, x_{j} \preceq x_{k}$. Since $x_{j} \preceq x_{k}$, we have $k k<j j=j k$. First suppose $i i \geq j j$. Then $i j=\max \{i i, j j\}+1=i i+1$. Now $i k=\max \{i i, k k\}+1$, and $i i \geq j j>k k$ implies $i k=i i+1$. Thus, $i j+k k=i i+1+k k=i k+k k \leq i k+j k$, as needed. Next suppose $i i<j j$, so that $i i+1 \leq j j$ and $i j=\max \{i i, j j\}+1=j j+1$. Now $x_{j} \preceq x_{k}$ implies $k k+1 \leq j j=j k$, and $x_{i} \| x_{k}$ implies $k k+1 \leq i k$. Thus, $i j+k k=j j+1+k k=j k+1+k k \leq j k+i k$, as needed.

Case 6: $\left(x_{i}\right.$ unrelated to x_{j} and $\left.x_{k} ; x_{k} \preceq x_{j}\right) . x_{i}\left\|x_{j}, x_{i}\right\| x_{k}, x_{k} \preceq x_{j}$. From $x_{k} \preceq x_{j}$, we have $k k=j k>j j$, and from $x_{i} \| x_{k}$ we have $i i+1 \leq i k$. First suppose $i i \geq j j$ so that $i j=\max \{i i, j j\}+1=i i+1$. Then $i j+k k=$ $i i+1+k k=i i+1+j k \leq i k+j k$, as needed. Next suppose $i i<j j$ so that $i j=j j+1$ and $k k>j j>i i$, and thus $i k=\max \{i i, k k\}+1=k k+1$. Then $i j+k k=j j+1+k k=j j+i k<j k+i k$, as needed.

Case 7: $\left(x_{k}\right.$ unrelated to x_{i} and $\left.x_{j}\right) . x_{i}\left\|x_{k}, x_{j}\right\| x_{k}$. Then $i k>i i, i k>k k$, $j k>j j$, and $j k>k k$. If $x_{i} \preceq x_{j}$, then $i j=i i$ so $i j+k k=i i+k k<i k+j k$, as needed. If $x_{j} \preceq x_{i}$, interchanging i and j in the previous sentence gives the desired inequality. Finally, suppose $x_{i} \| x_{j}$, so that $\left\{x_{i}, x_{j}, x_{k}\right\}$ is an antichain in (X, \preceq). Then $i j=\max \{i i, j j\}+1$. If $i j=i i+1$, then $i j+k k=i i+1+k k<i k+1+k k \leq i k+k j$ since $k j=\max \{k k, j j\}+1 \geq k k+1$. If $i j=j j+1$, then $i j+k k=j j+1+k k<j k+1+k k \leq j k+i k$ since $i k=\max \{i i, k k\}+1 \geq k k+1$.

Now we confirm that these cases cover all the situations. The one Type 0 partial order is covered by Case 7. The six Type 1 partial orders are covered by Cases 5,6 , and 7 and their (i, j)-symmetric forms. The three Type 2 partial orders having a maximum element are covered by Case 3 , its (i, j) symmetric form, and Case 4 . The three Type 2 partial orders having a minimum element are covered by Case 1, its (i, j)-symmetric form, and Case 2. There are six Type 3 partial orders (chains). Case 1 and its (i, j)-symmetric form cover the four having x_{i} or x_{j} as minimum element, and Case 2 covers the two having x_{k} as minimum element. This completes the proof of Theorem 3.

We observe that, as expected, many partial pseudometrics may generate the same topology. For example, for a chain $x_{1}>x_{2}>\cdots>x_{n}$, we may assign the natural (asymmetric) signed distances $q\left(x_{i}, x_{j}\right)=j-i$ between points, then add constants to the rows of $[i j]$ to eliminate negative entries and create a symmetric matrix. This will give a partial pseudometric with $i j=d\left(x_{i}, x_{j}\right)=i+j-2$.

We note that Theorem 3 remains valid if we redefine $i i$ to be the number of elements strictly greater than $\left[x_{i}\right]$ in $(X / \sim, \leq)$, where X / \sim is the set of equivalence classes determined by the equivalence relation $a \sim b$ if and only if $a \preceq b$ and $b \preceq a$, and \leq is the partial order on X / \sim defined by $[a] \leq[b]$ if and only if $a \preceq b$. With i i so redefined, the partial pseudometric p defined by Theorem 3 is minimal among the integer-valued partial pseudometrics generating the same topology: if d is an integer-valued partial pseudometric on X which generates the same topology as p, then $p\left(x_{i}, x_{j}\right) \leq d\left(x_{i}, x_{j}\right)$ for any $x_{i}, x_{j} \in X$.

Finally, if p is a partial pseudometric on $X, a \in X$, and if $B_{a} \cap X=$ \emptyset, we may define a partial pseudometric on $X \cup B_{a}$ by $p^{\prime}(x, y)=p(x, y)$, $p^{\prime}(x, b)=p^{\prime}(b, x)=p(x, a)$, and $p^{\prime}(b, b)=p(a, a)$ for any $x, y \in X$ and any $b \in B_{a}$. Then in the preorder induced by p^{\prime}, we have $a \preceq b$ and $b \preceq a$ for any $b \in B_{a}$, so the topology on $X \cup B_{a}$ is simply the topology on X with the set B_{a} added to every neighborhood of a. Using this idea, the results for topologies on finite sets can be extended to any finite topology on an arbitrary set. Specifically, if τ is a finite topology on X, define $a \approx b$ if and only if $\bigcap\{U \in \tau: a \in U\}=\bigcap\{U \in \tau: b \in U\}$, find the partial pseudometric p generating the topology on the finite space $(X / \approx, \tau / \approx)$, and append to each point $[a] \in X / \approx$ the set $B_{a}=[a] \backslash\{a\}$ as described above to get a partial pseudometric p^{\prime} on X which generates τ.

References

[1] M. Erné and K. Stege, Counting finite posets and topologies. Order 8 (1991) 247-265.
[2] R. Heckmann, Approximation of metric spaces by partial metric spaces. Applied Categorical Structures 7, (1999) no. 1-2, 71-83.
[3] R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metrizability in value quantales. Appl. Gen. Topol. 5 (2004), no. 1, 115-127.
[4] H.-P. A. Künzi and V. Vajner, Weighted quasi-metrics. Papers on general topology and applications (Flushing, NY, 1992), 64-77, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.
[5] S. G. Matthews, Partial metric topology. Papers on general topology and applications (Flushing, NY, 1992), 183-197, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994.

