Ordered separation axioms and the Wallman ordered compactification

By HANS-PETER A. KÜNZI (Rondebosch), AISLING E. MCCLUSKEY (Galway) and THOMAS A. RICHMOND (Bowling Green)

Abstract

Two constructions have been given previously of the Wallman ordered compactification $w_{0} X$ of a T_{1}-ordered, convex ordered topological space (X, τ, \leq). Both of those papers note that $w_{0} X$ is T_{1}, but need not be T_{1}-ordered. Using this as one motivation, we propose a new version of T_{1}-ordered, called T_{1}^{K}-ordered, which has the property that the Wallman ordered compactification of a T_{1}^{K}-ordered topological space is T_{1}^{K}-ordered. We also discuss the R_{0}-ordered (R_{0}^{K}-ordered) property, defined so that an ordered topological space is T_{1}-ordered (T_{1}^{K}-ordered) if and only if it is T_{0}-ordered and R_{0}-ordered (R_{0}^{K}-ordered).

1. Introduction

Given a set X with a topology τ and a partial order \leq, we recall the topology τ^{\sharp} on X as the collection of all τ-open \leq-increasing subsets of X and the topology τ^{b} on X as the corresponding collection of all τ-open \leq-decreasing subsets of X. Thus, we may consider the topological space (X, τ), the ordered topological space (X, τ, \leq), or the bitopological space $\left(X, \tau^{\sharp}, \tau^{b}\right)$.

As the study of ordered topological spaces and bitopological spaces developed, important topological properties, including separation axioms, were defined

[^0]for these new categories. As a general unifying principle, it seems natural that the chain of implications $(1) \Rightarrow(2) \Rightarrow(3)$ should hold for the statements
(1) $\left(X, \tau^{\sharp}, \tau^{b}\right)$ satisfies the bitopological (or pairwise) property P,
(2) (X, τ, \leq) satisfies the ordered property P, and
(3) (X, τ) satisfies the (topological) property P.

This scheme is borne out in particular by the complete regularity properties when certain other reasonable necessary conditions are assumed. However, as the ordered theory and bitopological theory were often developed independently, there are exceptions and anomalies, which we address here. In particular, the standard definition of the T_{1}-ordered property is seen to fall short of expectations in this regard, as well as in regard to its relation to the Wallman ordered compactification. In Section 2, we review the T_{0}-ordered and T_{1}-ordered properties and introduce the R_{0}-ordered property, noting their relation to the corresponding pairwise properties of $\left(X, \tau^{\sharp}, \tau^{\downarrow}\right)$. In Section 3, we introduce the T_{1}^{K}-ordered and R_{0}^{K}-ordered properties, and show that the T_{1}^{K}-ordered property does not have the shortcomings of the standard T_{1}-ordered property. Continuing in this theme, Section 4 shows that the Wallman ordered compactification behaves more nicely for T_{1}^{K}-ordered spaces than for T_{1}-ordered spaces.

Our notation is that of Nachbin [15]. If (X, τ, \leq) is a partially ordered topological space and $A \subseteq X$, then the increasing hull of A is $i(A)=\{x \in X: \exists a \in A$ with $a \leq x\}$. If $A=i(A)$, we say A is an increasing set. The closed increasing hull of A, denoted $I(A)$, is the smallest closed increasing set containing A. The decreasing hull $d(A)$, closed decreasing hull $D(A)$, and decreasing sets are defined dually. If $A=\{a\}$, we write $i(a)$ for $i(\{a\})$. Another useful hull operator, used in the construction of the Wallman ordered compactification, is $C(A)=I(A) \cap D(A)$. Following [5] and [6], $C(A)$ is the c-set hull of A, and if $A=C(A)$ we say A is a c-set. We say (X, τ, \leq) is convex if τ has a subbase of monotone (i.e., increasing or decreasing) open sets. In other terminology, note that $D(A)=\mathrm{cl}_{\tau_{\sharp}}(A)$ and $I(A)=\operatorname{cl}_{\tau^{b}}(A)$ where $\tau^{\sharp}=\{U \in \tau: U=i(U)\}$ and $\tau^{b}=\{U \in \tau: U=d(U)\}$.

The T_{0} (-ordered) reflection of a (partially ordered) topological space X is the T_{0} (-ordered) quotient space Y of X such that for any continuous (and increasing) function f from X into any arbitrary T_{0} (-ordered) space Z, there exists a unique continuous (and increasing) function $h: Y \rightarrow Z$ with $f=h \circ q$, where $q: X \rightarrow Y$ is the quotient map. The construction of the T_{0}-ordered reflection, considered in Section 2, utilizes the equivalence relation defined by $x \approx y$ if and only if $I(x)=I(y)$ and $D(x)=D(y)$, or equivalently, if and only if $C(x)=C(y)$ (see $[8]$). Let $[x]$ denote the \approx-equivalence class of x. The closure operator $C(\cdot)$
defines a reflexive, transitive relation $C=\bigcup_{x \in X}\{x\} \times C(x)$. The inverse relation C^{-1} is given by $C^{-1}(x)=\bigcap\left\{U \in \tau^{\sharp}: x \in U\right\} \cap \bigcap\left\{V \in \tau^{b}: x \in V\right\}$. (Some authors would call this the intersection of the τ^{\sharp}-kernel of $\{x\}$ and the τ^{b}-kernel of $\{x\}$.) If $C^{s}=C \cap C^{-1}$ is the symmetrization of C, then $C^{s}(x)=[x]$. Note that if X is convex, we have $x \approx y$ if and only if $\operatorname{cl}\{x\}=\operatorname{cl}\{y\}$. Also if X is convex, $[x]=\operatorname{cl}\{x\} \cap \bigcap\{U \in \tau: x \in U\} \subseteq \operatorname{cl}\{x\}=C(x)$.

2. T_{0}, T_{1}, and R_{0} separation properties

T_{0} Properties

We recall the following definitions (see [17]).
Definition 1. Suppose X is a set, τ is a topology on X, and \leq is a partial order on X.
(a) (X, τ) is T_{0} if $\operatorname{cl}(x)=\operatorname{cl}(y)$ implies $x=y$.
(b) (X, τ, \leq) is T_{0}-ordered if for any two distinct points, there exists a monotone open neighborhood of one of the points which does not contain the other, or equivalently, if $C^{s}(x)=\{x\}$ for all $x \in X$.
(c) $\left(X, \tau_{1}, \tau_{2}\right)$ is weak pairwise T_{0} if for distinct points x and y, one of the points is not in one of the closures $\left(\tau_{1}\right.$ or $\left.\tau_{2}\right)$ of the other.
(d) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise T_{0} if for distinct points x and y, either $x \notin \operatorname{cl}_{\tau_{1}}(y)$ or $y \notin \mathrm{cl}_{\tau_{2}}(x)$.

Note that pairwise T_{0} is defined by $x \neq y \Rightarrow\left(\left[x \notin \operatorname{cl}_{\tau_{1}}(y) \vee y \notin \operatorname{cl}_{\tau_{2}}(x)\right] \wedge\right.$ $\left.\left[y \notin \operatorname{cl}_{\tau_{1}}(x) \vee x \notin \mathrm{cl}_{\tau_{2}}(y)\right]\right)$, while weak pairwise T_{0} replaces the \wedge between the bracketed items by \vee. Clearly pairwise T_{0} implies weak pairwise T_{0} and, from the open set characterization, it is easily seen that (X, τ, \leq) being T_{0}-ordered implies (X, τ) is T_{0}. Now $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is weak pairwise T_{0} if and only if $x \neq y$ implies $[x \notin D(y)$ or $x \notin I(y)$ or $y \notin D(x)$ or $y \notin I(x)]$. Since the bracketed condition is equivalent to $C(x) \neq C(y)$, we see that $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is weakly pairwise T_{0} if and only if (X, τ, \leq) is T_{0}-ordered. Furthermore, if (X, τ, \leq) is convex, these two properties are also equivalent to (X, τ) being T_{0}.

T_{1} Properties

The standard definition of a T_{1}-ordered space, given by NACHBIN [15], does not meet many of the expectations one would have for T_{1}-ordered spaces. For example, if $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is pairwise T_{1}, it does not follow that (X, τ, \leq) is T_{1}-ordered. Also, the Wallman ordered compactification of a T_{1}-ordered topological space is
T_{1}, but need not be T_{1}-ordered. These deficiencies in the standard definition of T_{1}-ordered led us to define a new version in the next section. Here we present the standard definitions.

Definition 2. Suppose X is a set, τ is a topology on X, and \leq is a partial order on X.
(a) (X, τ) is T_{1} if $\operatorname{cl}(x)=\{x\}$ for all $x \in X$.
(b) (X, τ, \leq) is T_{1}-ordered if $d(x)$ and $i(x)$ are closed for all $x \in X$.
(c) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise T_{1} (see [14]) if for any two distinct points x and y in X, each has either a τ_{1}-open or a τ_{2}-open neighborhood which excludes the other.

Our definition of pairwise T_{1}, given by Murdeshwar and Naimpally [14] is called MN-pairwise- T_{1} by Reilly [17] and MRŠEvić [12]. Several other versions of pairwise T_{1} have been studied.
(1) (Reilly [17]) $\left(X, \tau_{1}, \tau_{2}\right)$ is Reilly pairwise T_{1} if for distinct points x and y in X, there exists a τ_{1}-open neighborhood of x excluding y and a τ_{2}-open neighborhood of y excluding x.
(2) (MRŠEVIĆ [12]) $\left(X, \tau_{1}, \tau_{2}\right)$ is middle pairwise T_{1} if for distinct points x and y in $X, \mathrm{cl}_{\tau_{1}}(x) \cap \mathrm{cl}_{\tau_{2}}(y)=\emptyset$ or $\mathrm{cl}_{\tau_{1}}(y) \cap \mathrm{cl}_{\tau_{2}}(x)=\emptyset$.
(3) (Swart [19]) $\left(X, \tau_{1}, \tau_{2}\right)$ is weak pairwise T_{1} if for distinct points x and y in X, there exists a τ_{1}-open neighborhood of x excluding y and a τ_{2}-open neighborhood of y excluding x, or there exists a τ_{1}-open neighborhood of y excluding x and a τ_{2}-open neighborhood of x excluding y.
We note that, given an ordered topological space (X, τ, \leq), the corresponding bitopological space $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is Reilly pairwise T_{1} only if the order \leq is discrete (that is, equality), rendering this version not useful in the study of ordered topological spaces. The version due to Mršević is called "middle" since it is implied by Reilly pairwise T_{1} and implies Swart's weak pairwise T_{1}. All of these versions of pairwise T_{1} are stronger than our definition of (MN) pairwise T_{1}. Some elementary facts regarding these definitions are found in [4] and [18]. The fact that many versions of the pairwise T_{1} property have been considered suggests that there may be more than one useful version of the T_{1}-ordered property.

The new version of T_{1}-ordered introduced below, called T_{1}^{K}-ordered, is implied by $\left(X, \tau^{\sharp}, \tau^{b}\right)$ being (MN) pairwise T_{1}, the weakest of these pairwise T_{1} properties.

It is easily seen that (X, τ, \leq) being T_{1}-ordered implies (X, τ) is T_{1}, and $\left(X, \tau^{\sharp}, \tau^{b}\right)$ being pairwise T_{1} implies (X, τ) is T_{1}. However, $\left(X, \tau^{\sharp}, \tau^{b}\right)$ being pairwise T_{1} does not imply (X, τ, \leq) is T_{1}-ordered. Indeed, the example after Theorem 15 shows that $\left(X, \tau^{\sharp}, \tau^{b}\right)$ being middle pairwise T_{1} (the strongest of these pairwise T_{1} properties which can possibly be satisfied by ordered spaces other than antichains) does not imply (X, τ, \leq) is T_{1}-ordered. That example also shows that $\left(X, \tau^{\sharp}, \tau^{b}\right)$ being middle pairwise T_{1} does not imply that $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is pairwise R_{0} (for the definition of this concept, see below).

The following characterization of the T_{1}-ordered property will be used often.
Lemma 3. (X, τ, \leq) is T_{1}-ordered if and only if $i(x)=\bigcap\left\{U \in \tau^{\sharp}: x \in U\right\}$ and dually for all $x \in X$.

Proof. If X is T_{1}-ordered, then $y \notin i(x)$ implies $x \notin d(y)=D(y)$, so $i(x) \subseteq X \backslash D(y) \equiv H_{y}$, and thus $i(x)=\bigcap\left\{H_{y}: y \notin i(x)\right\} \supseteq \bigcap\left\{U \in \tau^{\sharp}: x \in U\right\}$. The reverse inclusion is immediate. Conversely, if $y \notin i(x)$, then $x \notin d(y)=$ $\bigcap\left\{U \in \tau^{b}: y \in U\right\}$, so there exists an open decreasing neighborhood of y disjoint from x and therefore from $i(x)$, so $y \notin \operatorname{cl}(i(x))$, and thus $i(x)$ is closed.

R_{0} Properties

One motivation for R_{0} spaces, introduced by DAVIS [3], is that a space is T_{1} if and only if it is T_{0} and R_{0}. The analogous equivalences in the categories of ordered topological spaces and bitopological spaces are used to motivate definitions of the appropriate concepts of R_{0} in those categories. Note however, as seen in the example mentioned before Lemma 3, that the weak concept of pairwise T_{1} used in this article does not imply pairwise R_{0} as defined below. It appears that R_{0} ordered spaces have not been studied previously, so our discussion here will be more thorough. We start with some theorems providing equivalent definitions of the R_{0} properties in the three categories in question.

Theorem 4. The following are equivalent:
(a) (X, τ) is an R_{0}-space.
(b) F closed, $x \notin F \Rightarrow \exists$ open U with $F \subseteq U, x \notin U$.
(c) U open, $x \in U \Rightarrow \operatorname{cl}\{x\} \subseteq U$.
(d) $\{\operatorname{cl}\{x\}: x \in X\}$ is a partition of X.
(e) τ is lattice isomorphic to the topology of a T_{1}-space.
(f) $\operatorname{cl}\{x\} \neq \operatorname{cl}\{y\} \Rightarrow \exists$ neighborhood of x not containing y.
(g) F closed, $\operatorname{cl}\{x\} \cap F \neq \emptyset \Rightarrow x \in F$.
(h) $\bigcap\{U \in \tau: x \in U\}=\operatorname{cl}\{x\}$ for all $x \in X$.
(i) The T_{0}-reflection of X is T_{1}.
(j) $\cap\{U \in \tau: A \subseteq U\} \subseteq \operatorname{cl} A$ for all $A \subseteq X$.

These equivalences may be found in [3] or [1], except for (j), which is easily shown. (In [1], a $T_{(\alpha, \beta)}$ space is one whose T_{α} reflection is already T_{β}, so there, R_{0} spaces are called $T_{(0,1)}$ spaces.) Note that the containment in (j) cannot be strengthened to equality: Let $X=[0,1]$ with the discrete topology on $(0,1]$ and the usual neighborhoods of 0 . Now (b) holds, but $A=(0,1]=\bigcap\{U \in \tau: A \subseteq U\} \neq$ cl $A=[0,1]$.

It will be interesting to note that many of the characterizations of R_{0} given above have direct analogs in either the ordered topological setting or the bitopological setting, but not both.

The definition given below for an R_{0}-ordered space arises from the necessary and sufficient conditions in $[8]$ for the T_{0}-ordered reflection of an ordered topological space to be T_{1}-ordered. For an ordered topological space (X, τ, \leq), we obtain the T_{0}-ordered reflection $\left(X / \approx, \tau^{0}, \leq^{0}\right)$ as an ordered quotient of X, modulo the equivalence relation $x \approx y$ if and only if $C(x)=C(y)$. The order \leq^{0} on X / \approx is the "finite step order" given by

$$
\begin{aligned}
{\left[z_{0}\right] \leq^{0}\left[z_{n}\right] \Longleftrightarrow } & \exists\left[z_{1}\right],\left[z_{2}\right], \ldots,\left[z_{n-1}\right] \text { and } \exists z_{i}^{\prime}, z_{i}^{*} \in\left[z_{i}\right](i=0,1, \ldots, n) \\
& \text { with } z_{i}^{\prime} \leq z_{i+1}^{*} \forall i=0,1, \ldots, n-1 .
\end{aligned}
$$

Note that any closed or open monotone set S in X is \approx-saturated (that is, $x \in S$ implies $[x] \subseteq S$).

We note that Mršević [13] introduced a bitopological "quotient space" which, in the case of $\left(X, \tau^{\sharp}, \tau^{b}\right)$, is equivalent to the T_{0}-ordered reflection of (X, τ, \leq).

Lemma 5. Suppose $x, y \in X, F \subseteq X$, and $f: X \rightarrow X / \approx$ is the quotient map from an ordered topological space X to its T_{0}-ordered reflection X / \approx.
(a) If A is closed and increasing in X then $f(A)$ is closed and increasing in X / \approx, and dually. If A is \approx-saturated, the converse holds.
(b) B is closed and increasing in X / \approx if and only if $f^{-1}(B)$ is closed and increasing in X, and dually.
(c) $f(I(x))=I_{X / \approx}([x])$ and $f(D(x))=D_{X / \approx}([x])$.
(d) $f^{-1}\left(I_{X / \approx}(f(x))=f^{-1}\left(I_{X / \approx}([x])\right)=I(x)\right.$ and dually.
(e) If $[y] \in f(D(F))$, and $[x] \leq[y]$ in X / \approx, then $x \in D(F)$, and dually.

Proof. (a), (b), and (c) were stated and justified in the paragraph before Theorem 3.1 of [8]. See also Corollary 2 and Proposition 5 of [13].
(d) $I(x) \subseteq f^{-1}\left(I_{X / \approx}([x])\right)$ since the latter set is a closed increasing set containing x and the former is the smallest such set. For the reverse inclusion, if $z \in f^{-1}\left(I_{X / \approx}([x])\right)$ but $z \notin I(x)$, then since $I(x)$ is saturated, applying f (and part (c)) gives $f(z) \notin f(I(x))=I_{X / \approx}([x])$, contrary to $z \in f^{-1}\left(I_{X / \approx}([x])\right)$.
(e) Suppose $[y] \in f(D(F))$ with $[x] \leq[y]$ in X / \approx. Now $D(F)$ is closed and decreasing, and thus saturated, and contains y. Since X / \approx carries the finite step order, it follows that $x \in D(F)$.

Any of the equivalent statements below may be taken as the definition of an R_{0}-ordered space.

Theorem 6. For an ordered topological space (X, τ, \leq) with T_{0}-ordered reflection X / \approx, the following are equivalent:
(a) (X, τ, \leq) is R_{0}-ordered.
(b) $\bigcap\left\{U \in \tau^{\sharp}: x \in U\right\}=i([x])$ and dually for all $x \in X$.
(c) The T_{0}-ordered reflection of X is T_{1}-ordered.
(d) $[x] \not \leq[y]$ in X / \approx implies $x \notin D(y)$ and $y \notin I(x)$.
(e) $I(x)=f^{-1}\left(i_{X / \approx}([x])\right)$ and $D(x)=f^{-1}\left(d_{X / \approx}([x])\right)$ for all $x \in X$, where $f: X \rightarrow X / \approx$ is the natural ordered quotient map.

Proof. The equivalence of (b) and (c) is Theorem 3.2 of [8], and was the impetus for taking these conditions to be the definition of R_{0}-ordered.
$(c) \Rightarrow(d)$. The proof of this implication is modeled on the proof of the corresponding non-ordered case (Theorem 3.5 (i) \Rightarrow (ii) in [1]). Suppose (c) holds and $[x] \not \leq[y]$ in X / \approx. Then $[y] \notin i_{X / \approx}([x])=I_{X / \approx}([x])$. Applying f^{-1}, where $f: X \rightarrow X / \approx$ is the (ordered) quotient map, we have $y \notin f^{-1}\left(I_{X / \approx}([x])\right)=$ $f^{-1}\left(f(I(x)) \supseteq I(x)\right.$, so $y \notin I(x)$. Similarly, $[x] \notin d_{X / \approx}([y])$ implies $x \notin D(y)$.
$(\mathrm{d}) \Rightarrow(\mathrm{c})$. Suppose (d) holds and $[y] \notin i_{X / \approx}([x])$. Then $x \notin D(y)$ implies that $X \backslash D(y)$ is an open increasing (and thus, saturated) neighborhood of x which does not include y, so $[y] \notin I_{X / \approx}([x])$. Similarly, $y \notin I(x)$ shows $X \backslash I(x)$ is an open decreasing saturated neighborhood of y not containing x.
$(\mathrm{c}) \Rightarrow(\mathrm{e})$. Suppose (c) holds. Then $i_{X / \approx}([x])$ is closed and increasing, so $f^{-1}\left(i_{X / \approx}([x])\right)$ is closed, increasing, and contains x, so $I(x) \subseteq f^{-1}\left(i_{X /} \approx([x])\right)$. For the reverse inclusion, if $z \in f^{-1}\left(i_{X / \approx}([x])\right)$, then $[z]=f(z) \in i_{X / \approx}([x])=$ $I_{X / \approx}([x])=f(I(x))$, and thus $z \in I(x)$ by Lemma $5(\mathrm{e})$. Thus, we have $I(x)=$ $f^{-1}\left(i_{X / \approx}([x])\right)$. The dual argument completes this implication.
$(\mathrm{e}) \Rightarrow(\mathrm{c})$. Suppose (e). Then by Lemma $5(\mathrm{~d})$, we have $f^{-1}\left(I_{X / \approx}([x])\right)=$ $f^{-1}\left(i_{X / \approx}([x])\right)$ and $f^{-1}(D(x / \approx[x]))=f^{-1}\left(d_{X / \approx}([x])\right)$ for all $x \in X$, and applying f, which is onto, shows $I_{X / \approx}([x])=i_{X / \approx}([x])$ and $D_{X / \approx}([x])=d_{X / \approx}([x])$ for all $[x] \in X / \approx$, so X / \approx is T_{1}-ordered.

We note that items (b), (c), and (d) of Theorem 6 are direct analogs of items (h), (i), and (f), respectively, of Theorem 4.

Theorem 7. An ordered topological space (X, τ, \leq) is T_{1}-ordered if and only if it is T_{0}-ordered and R_{0}-ordered.

Proof. Suppose (X, τ, \leq) is T_{0}-ordered and R_{0}-ordered. The former condition implies $[x]=\{x\}$ and the latter condition then implies $i(x)=\bigcap\left\{U \in \tau^{\sharp}\right.$: $x \in U\}$ and dually, so (X, τ, \leq) is T_{1}-ordered by Lemma 3 .

Conversely, suppose (X, τ, \leq) is T_{1}-ordered. Then $[x]=C^{s}(x)=D(x) \cap$ $I(x) \cap D^{-1}(x) \cap I^{-1}(x)=d(x) \cap i(x) \cap d^{-1}(x) \cap i^{-1}(x)=\{x\}$, so X is T_{0}-ordered. Thus, $i([x])=i\left(C^{s}(x)\right)=i(x)=\bigcap\left\{U \in \tau^{\sharp}: x \in U\right\}$, by Lemma 3. With the dual argument, Theorem 6 (b) shows that X is R_{0}-ordered.

MisRa and Dube [11] give several characterizations of the pairwise R_{0} property, including the following. The equivalence of (a) and (b) is taken to be the definition of the pairwise R_{0} property.

Theorem 8 ([11]). For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are equivalent:
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise R_{0}.
(b) For every $x \in X$, if U is a τ_{i}-open neighborhood of x, then $\operatorname{cl}_{\tau_{j}}(x) \subseteq U$, where $\{i, j\}=\{1,2\}$.
(c) $y \in \operatorname{cl}_{\tau_{i}}(x) \Longleftrightarrow x \in \operatorname{cl}_{\tau_{j}}(y)$ for $\{i, j\}=\{1,2\}$.
(d) If F is τ_{i}-closed and $x \notin F$, then there exists a τ_{j}-open set U with $F \subseteq U$ and $x \notin U$, for $\{i, j\}=\{1,2\}$.
(e) $\bigcap\left\{U \in \tau_{i}: F \subseteq U\right\}=F$ for any τ_{j}-closed $F \subseteq X$, for $\{i, j\}=\{1,2\}$.
(f) $\operatorname{cl}_{\tau_{i}}(x) \cap \operatorname{cl}_{\tau_{j}}(F) \neq \emptyset \Rightarrow x \in \operatorname{cl}_{\tau_{j}}(F)$ for all $x \in X, F \subseteq X$, and for $\{i, j\}=\{1,2\}$.

We observe that items (b), (d), and (f) of Theorem 8 are pairwise versions of items (c), (b), and (g), respectively, of Theorem 4. Of the standard R_{0} defining items from Theorem 4, we found none which had direct analogs to both the ordered setting and the bitopological setting. This fact has also prompted our
reconsideration of the standard definition of T_{1}-ordered, and subsequently, of R_{0} ordered. We note that (X, τ_{1}, τ_{2}) being pairwise R_{0} implies ($X, \tau_{1} \vee \tau_{2}$) is R_{0} (Proposition 9 of [13]).

3. T_{1}^{K}-ordered and R_{0}^{K}-ordered spaces

Since the usual definitions of T_{1}-ordered, and hence R_{0}-ordered have some deficiencies as noted above, we propose the following new versions, denoted T_{1}^{K} ordered and R_{0}^{K}-ordered.

Definition 9. An ordered topological space (X, τ, \leq) is T_{1}^{K}-ordered if $C(x)=$ $\{x\}$ for all $x \in X$.

We make the following observations.
Theorem 10. Suppose (X, τ, \leq) is an ordered topological space.
(a) (X, τ, \leq) is T_{1}^{K}-ordered if and only if $\{x\}=\bigcap\left\{U \in \tau^{\sharp} \cup \tau^{b}: x \in U\right\}$ for every $x \in X$.
(b) $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is pairwise $T_{1} \Longleftrightarrow(X, \tau, \leq)$ is T_{1}^{K}-ordered $\Rightarrow(X, \tau)$ is T_{1}, and (X, τ, \leq) is T_{1}-ordered $\Rightarrow(X, \tau, \leq)$ is T_{1}^{K}-ordered. (X, τ, \leq) is T_{1}^{K}-ordered and convex $\Longleftrightarrow(X, \tau)$ is T_{1} and (X, τ, \leq) is convex.
(c) For a linearly ordered space $(X, \tau, \leq), T_{1}$-ordered and T_{1}^{K}-ordered are equivalent.

Proof. (a) is proved analogously to the corresponding characterization of T_{1}-ordered given in Lemma 3. The proof of (b) follows immediately from (a), Definitions 2 and 9 , and the last sentence of Section 1. For (c), if X is linearly ordered and T_{1}^{K}-ordered and $y \notin i(x)$, then $y \in d(x) \subseteq D(x)$, but $y \notin\{x\}=$ $C(x)=I(x) \cap D(x)$, so $y \notin I(x)$. Thus, $i(x)=I(x)$, and with the dual argument, X is T_{1}-ordered.

The example below shows that T_{1}^{K}-ordered is not equivalent to the middleor weak- pairwise T_{1} properties applied to $\left(X, \tau^{\sharp}, \tau^{b}\right)$.

Example 11. Let $X=\mathbb{N} \cup\{e, \pi\}$, where \mathbb{N} is the set of natural numbers. Take all points in \mathbb{N} to be topologically isolated and take the neighborhoods of $x \in\{e, \pi\}$ to be cofinite sets in X containing x. Now X is a T_{1} space. Let $\leq=\Delta \cup\{(2 n, e): n \in \mathbb{N}\} \cup\{(2 n-1, \pi): n \in \mathbb{N}\}$. This is a partial order. Note that e and π are the only nonisolated points in X and for each $x \in X, d(x)$ and $i(x)$ are finite and thus closed, except for $d(\pi)$ and $d(e)$. Observe that $\pi \in D(e)$
and $e \in D(\pi)$. It immediately follows that $C(x)=\{x\}$ for every $x \in X$. Thus, X is a T_{1}^{K}-ordered space.

Consider e and π. There exists no increasing (open) neighborhood of e that does not contain π and no increasing (open) neighborhood of π that does not contain e. Thus, the associated bispace ($X, \tau^{\sharp}, \tau^{b}$) is not a weak pairwise T_{1} space, and hence is not middle pairwise T_{1}. Noting that $\pi \in \bigcap\left\{U \in \tau^{\sharp}: e \in U\right\} \neq$ $i(e)=\{e\}$, Lemma 3 shows that X is not T_{1}-ordered. This is also easily seen since $d(\pi)$ is not closed.

Now we define R_{0}^{K}-ordered spaces and subsequently list some of their properties.

Definition 12. An ordered topological space (X, τ, \leq) is R_{0}^{K}-ordered if, for all $x, y \in X$, we have $y \in C(x)$ implies $x \in C(y)$.

Theorem 13. Suppose (X, τ, \leq) is an ordered topological space.
(a) The following are equivalent:
(i) (X, τ, \leq) is R_{0}^{K}-ordered.
(ii) $C=C^{-1}$.
(iii) C is an equivalence relation.
(iv) $x \in C(y)$ if and only if $C(x)=C(y)$ for all $x, y \in X$.
(v) $x \in C(y)$ if and only if $[x]=[y]$ for all $x, y \in X$.
(vi) $\{C(x): x \in X\}$ is a partition of X.
(b) $\left(X, \tau^{\sharp}, \tau^{b}\right)$ is pairwise $R_{0} \Rightarrow(X, \tau, \leq)$ is R_{0}^{K}-ordered. (X, τ, \leq) is R_{0}-ordered $\Rightarrow(X, \tau, \leq)$ is R_{0}^{K}-ordered. (X, τ, \leq) is R_{0}^{K}-ordered and convex $\Longleftrightarrow(X, \tau)$ is R_{0} and (X, τ, \leq) is convex.
(c) If (X, τ, \leq) is a linearly ordered space, then R_{0}-ordered and R_{0}^{K}-ordered are equivalent properties.
Proof. (a) is immediate.
(b) The first implication follows from a comparison of part (iv) of (a) above and Theorem 8 (c). X is R_{0}-ordered if and only if X / \approx is T_{1}-ordered, which implies X / \approx is T_{1}^{K}-ordered, and hence (by Theorem 15 below) X is R_{0}^{K}-ordered.

Suppose X is R_{0}^{K}-ordered and convex. We will show that $\{\mathrm{cl}(x): x \in X\}$ partitions X. Suppose $z \in \operatorname{cl}(x) \cap \operatorname{cl}(y)$. Now $z \in \operatorname{cl}(x) \subseteq C(x)$ implies, by part (v) of (a), that $[x]=[z]$, and similarly $[y]=[z]=[x]$. Recalling that convexity implies $[w] \subseteq \operatorname{cl}(w)$ for any $w \in X$, we have $x \in[x]=[y] \subseteq \operatorname{cl}(y)$ and $y \in[y]=[x] \subseteq \operatorname{cl}(x)$. Applying the closure operator now shows $\operatorname{cl}(x) \subseteq \operatorname{cl}(y) \subseteq \operatorname{cl}(x)$, so $\operatorname{cl}(x)=\operatorname{cl}(y)$, and thus (X, τ) is R_{0} by Theorem $4(\mathrm{~d})$. Conversely, suppose (X, τ, \leq) is convex
and (X, τ) is R_{0}. We will show that $z \in C(x)$ implies $C(z)=C(x)$, from which it easily follows that $\{C(x): x \in X\}$ partitions X and thus X is R_{0}^{K}-ordered. If $z \in$ $C(x)$ and $x \in C(z)$, applying the closure operator C shows $C(x)=C(z)$. Thus, suppose $z \in C(x)$ and $x \notin C(z)$. Then $x \notin \operatorname{cl}(z)$, $\operatorname{socl}(x) \neq \operatorname{cl}(z)$. Theorem 4 (f) implies the existence of a neighborhood N of z which does not contain x, and by convexity, we may assume N is monotone open. If N is increasing, then $X \backslash N$ is a closed decreasing set containing x and excluding z. This shows $z \notin D(x)$, giving the contradiction that $z \notin C(x)$. The dual argument applies if N is decreasing.
(c) If X is a linearly ordered R_{0}^{K}-ordered space, by Theorem 15 below, X / \approx is T_{1}^{K}-ordered. It is easy to see that the finite step order on X / \approx is also linear, in which case X / \approx is T_{1}-ordered, and therefore X is R_{0}-ordered. The converse follows from part (b).

Observing the appearance of convexity in (b) above, we note that R_{0}^{K}-ordered need not imply R_{0} if the topology is not convex. For example, consider $X=$ $\{\perp, a, b, \top\}$ where a and b are noncomparable and $\perp \leq x \leq \top$ for all $x \in X$. Give X the topology having $\{\{T, \perp\},\{a, b\},\{a\}\}$ as base of closed sets. It is easy to check that $C(x)=X$ for each $x \in X$, so X is R_{0}^{K}-ordered. In fact, X is R_{0}-ordered since $i([x])=i(X)=X=\bigcap\left\{U \in \tau^{\sharp}: x \in U\right\}$ and dually for each $x \in X$. However, $\{\mathrm{cl}(x): x \in X\}$ does not partition X, so X is not R_{0}.

The next theorems show that the R_{0}^{K}-ordered and T_{0}^{K}-ordered properties interact as one would hope.

Theorem 14. (X, τ, \leq) is T_{1}^{K}-ordered if and only if it is T_{0}-ordered and R_{0}^{K}-ordered.

Proof. If X is T_{0}-ordered and R_{0}^{K}-ordered, then for all $x \in X$ we have $\{x\}=C^{-1}(x) \cap C(x)=C(x) \cap C(x)=C(x)$, where the first equality follows from the T_{0}-ordered property and the second equality from the R_{0}^{K}-ordered property. Thus, X is T_{1}^{K}-ordered. Conversely, if X is T_{1}^{K}-ordered, then $C(x)=\{x\}$ implies $C(x) \cap C^{-1}(x)=\{x\}$, so that X is T_{0}-ordered. Also, $y \in C(x)=\{x\}$ implies $x \in C(y)$, so X is R_{0}^{K}-ordered.

Theorem 15. The T_{0}-ordered reflection X / \approx of an ordered topological space X is T_{1}^{K}-ordered if and only if X is R_{0}^{K}-ordered.

Proof. If X / \approx is T_{1}^{K}-ordered, then $I_{X / \approx}([x]) \cap D_{X / \approx}([x])=\{[x]\}$ for all $[x] \in X / \approx$. Applying f^{-1} as in Lemma 5 (d) gives $C(x)=I(x) \cap D(x)=[x]$. Now $y \in C(x)=[x] \Longleftrightarrow C(x)=C(y)$, so X is R_{0}^{K}-ordered by Theorem 13 (a).

Conversely, suppose X is R_{0}^{K}-ordered and $[y] \in C_{X / \approx}([x])=I_{X / \approx}([x]) \cap$ $D_{X / \approx}([x])$. Applying f^{-1} as in Lemma 5 (d) gives $[y] \subseteq I(x) \cap D(x)=C(x)$,
and now $y \in C(x)$ implies $[y]=[x]$. It follows that $C_{X / \approx}([x])=\{[x]\}$ for any $[x] \in X / \approx$, so X / \approx is T_{1}^{K}-ordered. This direction of the proof also follows from the bitopological quotient construction of Theorem 3.1 of [20], which also appears as Corollary 6 of [13].

$\left(X, \tau^{\sharp}, \tau^{\text {b }}\right.$)		(X, τ, \leq)		(X, τ)
pairwise T_{0}	\Rightarrow	T_{0}-ordered	\Rightarrow	T_{0}
weak pairwise T_{0}	\Longleftrightarrow	T_{0}-ordered	\Rightarrow	T_{0}
pairwise R_{0}	\nRightarrow	T_{0}-ordered + convex R_{0}-ordered	\Longleftrightarrow \nRightarrow	$\begin{aligned} & \left\{\begin{array}{c} T_{0}+ \\ (X, \tau, \leq) \text { convex } \end{array}\right. \\ & R_{0} \end{aligned}$
pairwise R_{0}	\Rightarrow	$R_{0}^{K} \text {-ordered }$	\nRightarrow	R_{0}
		R_{0}^{K}-ordered + convex	\Longleftrightarrow	$\left\{\begin{array}{c} R_{0}+ \\ (X, \tau, \leq) \text { convex } \end{array}\right.$
pairwise T_{1}	\nRightarrow	T_{1}-ordered	\Rightarrow	T_{1}
		\Downarrow		
pairwise T_{1}	\Longleftrightarrow	T_{1}^{K}-ordered	\Rightarrow	T_{1}
		T_{1}^{K}-ordered + convex	\Longleftrightarrow	$\left\{\begin{array}{c} T_{1}+ \\ (X, \tau, \leq) \text { convex } \end{array}\right.$
$\begin{gathered} \text { pairwise } \\ \text { completely regular } \\ +(X, \tau, \leq) \text { convex } \\ +(X, \tau, \leq) T_{1} \text {-ordered } \end{gathered}$	\Rightarrow	completely regularly ordered	\Rightarrow	completely regular

We note that T_{1}-ordered is a strictly stronger property than T_{1}^{K}-ordered. For example, consider the interval $[0,1] \subseteq \mathbb{R}$ with the usual topology. Impose the usual order on $(0,1]$, with 0 noncomparable to all other points. This ordered topological space is easily seen to be $\left(\tau^{\sharp}, \tau^{b}\right)$-pairwise T_{1}, and hence T_{1}^{K}-ordered, but since, for example, $d(1)=(0,1]$ is not closed, it is not T_{1}-ordered. Furthermore, since T_{1}^{K}-ordered implies T_{0}-ordered, this space is its own T_{0}-ordered reflection. Now the characterizations in Theorem 6 and Theorem 15 show that this space is R_{0}^{K} ordered but not R_{0}-ordered. Thus, R_{0}-ordered is a strictly stronger property than R_{0}^{K}-ordered.

The table above summarizes the implications $(1) \Rightarrow(2) \Rightarrow(3)$ suggested in the introduction. A bitopological space is pairwise completely regular (see [9]) if and only if it admits a compatible quasi-uniformity \mathcal{U} in the sense that $\tau(\mathcal{U})$ is the first topology and $\tau\left(\mathcal{U}^{-1}\right)$ is the second topology. An ordered topological space is
completely regularly ordered (see [7], [16]) if and only if there is a quasi-uniformity \mathcal{U} with $\bigcap \mathcal{U}=\leq$ and $\tau(\mathcal{U}) \vee \tau\left(\mathcal{U}^{-1}\right)=\tau$. Such spaces are always convex and T_{1} ordered. Completely regular topological spaces are the uniformizable spaces.

The following result is analogous to Theorem 4 (e).
Theorem 16. An ordered topological space (X, τ, \leq) is R_{0}^{K}-ordered if and only if there is a lattice isomorphism φ between τ and the topology τ_{1} of some T_{1}^{K}-ordered topological space $\left(X_{1}, \tau_{1}, \leq_{1}\right)$ such that the restrictions $\left.\varphi\right|_{\tau^{\sharp}}$ and $\left.\varphi\right|_{\tau^{b}}$ are lattice isomorphisms from τ^{\sharp} onto τ_{1}^{\sharp} and from τ^{b} onto τ_{1}^{b}, respectively.

Proof. Suppose (X, τ, \leq) is an ordered topological space, $\left(X_{1}, \tau_{1}, \leq_{1}\right)$ is a T_{1}^{K}-ordered topological space, and there exists a lattice isomorphism from τ to τ_{1} which induces lattice isomorphisms from τ^{\sharp} to τ_{1}^{\sharp} and from τ^{b} to τ_{1}^{b}. Now $\{x\}=C(x)=I(x) \cap D(x)$ for every $x \in X_{1}$, so every τ_{1}-closed set F is a disjoint union of minimal nonempty closed sets, each of which is the intersection of a closed increasing set and a closed decreasing set. Correspondingly, in X, each closed set, and in particular, X, is partitioned into minimal nonempty closed sets, each of which is the intersection of a closed increasing set and a closed decreasing set. For $x \in X$, let \hat{x} be the member of this partition of X which contains x. Then $\hat{x}=C(x)$, so $\{C(x): x \in X\}$ partitions X, and thus X is R_{0}^{K}-ordered.

For the converse, take $\left(X_{1}, \tau_{1}, \leq_{1}\right)$ to be the T_{0}-ordered reflection of X. The result follows from Lemma 5 (a) and (b), noting that closed or open monotone sets in X are \approx-saturated.

As additional evidence that the standard definition of T_{1}-ordered and the corresponding definition of R_{0}-ordered are not optimal, we show that Theorem 16 does not remain valid if R_{0}^{K}-ordered and T_{1}^{K}-ordered are replaced by R_{0}-ordered and T_{1}-ordered. Let $N=\{a, b, c, d\}$ with the order $\Delta_{N} \cup\{(a, b),(c, d),(c, b)\}$, and the topology $\tau=\tau^{\sharp} \cup \tau^{b}$ where $\tau^{\sharp}=\{\emptyset,\{a, b\}, N\}$ and $\tau^{b}=\{\emptyset,\{c, d\}, N\}$. Now $i([c])=i(\{c, d\}) \neq N=\bigcap\left\{U \in \tau^{\sharp}: c \in U\right\}$. Thus N is not R_{0}-ordered. However, if $\left(Y, \tau_{1}, \leq_{1}\right)$ is the subspace $\{a, d\}$ of N, then Y is T_{1}-ordered and there is a natural lattice isomorphism between τ and τ_{1} which induces a lattice isomorphism between $\tau^{\sharp}\left(\tau^{b}\right)$ and $\tau_{1}^{\sharp}\left(\tau_{1}^{b}\right)$. Further note that both N and Y are convex. One direction of Theorem 16, however, does remain valid if the K is dropped from R_{0}^{K}-ordered and T_{1}^{K}-ordered. The argument of the last paragraph of the proof still holds. (See also Proposition 6 of [13].)

We also note that for (X, τ, \leq) to be R_{0}^{K}-ordered, it is not sufficient to have τ^{\sharp} and τ^{b} individually lattice isomorphic to the upper and lower topologies τ_{1}^{\sharp} and $\tau_{1}^{\text {b }}$ of a T_{1}^{K}-ordered topological space, even if both spaces are convex. Consider
$X=\{a, b, c, d\}$ with the order $\Delta_{X} \cup\{(a, b),(c, d)\}$ and with subbase of open sets $\{\{b\},\{c\}, X\}$. Note that $\tau^{\sharp}=\{\emptyset,\{b\}, X\}$ is a 3 -element nested chain, as is $\tau^{b}=\{\emptyset,\{c\}, X\}$, and (X, τ, \leq) is convex. Now if $X_{1}=\{1,2\}$ with the discrete topology τ_{1} and usual order \leq_{1}, then it is easy to see that $\left(X_{1}, \tau_{1}, \leq_{1}\right)$ is T_{1} ordered and thus T_{1}^{K}-ordered, τ_{1}^{\sharp} and τ_{1}^{b} are individually lattice isomorphic to τ^{\sharp} and τ^{b}, yet (X, τ, \leq) is not R_{0}^{K}-ordered since, for example, $a \in C(b)$ but $b \notin C(a)$.

4. The Wallman ordered compactification

The Wallman ordered compactification of a T_{1}-ordered convex ordered topological space (X, τ, \leq) was first constructed by Choe and Park [2] using maximal bifilters, and later by Kent [5] using maximal c-filters. A c-filter is a filter having a base of c-sets. Let $w_{0} X$ be the set of maximal c-filters on (X, τ, \leq). For $A \subseteq X$, let $A^{*}=\left\{\mathcal{F} \in w_{0} X: A \in \mathcal{F}\right\}$. Then $\left\{A^{*}: A\right.$ is a c-set in $\left.X\right\}$ is a closed subbase for a topology on $w_{0} X$. A partial order on $w_{0} X$ is defined by $\mathcal{F} \leq \mathcal{G}$ if and only if $I(\mathcal{F}) \subseteq \mathcal{G}$ and $D(\mathcal{G}) \subseteq \mathcal{F}$, where $I(\mathcal{F})$ is the filter generated by $\{I(F): F \in \mathcal{F}\}$ and $D(\mathcal{G})$ is defined similarly. Now $w_{0} X$ with this topology and order is the Wallman ordered compactification. If H is a monotone open or closed set in X, then H^{*} has the same properties in $w_{0} X$. Choe and Park's earlier construction uses maximal bifilters $(\mathcal{F}, \mathcal{G})$ where a bifilter is defined to be a pair of filters $(\mathcal{F}, \mathcal{G})$ such that $\mathcal{F} \vee \mathcal{G}$ exists, \mathcal{F} has a base of closed decreasing sets, and \mathcal{G} has a base of closed increasing sets. The set of maximal bifilters is given the topology having a subbase of closed sets of form $\left\{(\mathcal{F}, \mathcal{G}) \in w_{0} X: D(A) \in \mathcal{F}\right.$ and $\left.I(A) \in \mathcal{G}\right\}$ where A is any subset of X, and they order the set of maximal bifilters by $(\mathcal{F}, \mathcal{G}) \leq\left(\mathcal{F}^{\prime}, \mathcal{G}^{\prime}\right)$ if and only if $\mathcal{F} \subseteq \mathcal{F}^{\prime}$ and $\mathcal{G} \subseteq \mathcal{G}^{\prime}$. The equivalence of the bifilter construction and the c-set construction of $w_{0} X$ is seen by the bijection $(\mathcal{F}, \mathcal{G}) \rightarrow \mathcal{F} \vee \mathcal{G}$ from the set of maximal bifilters on X to the set of maximal c-filters on X.

Both constructions of the Wallman ordered compactification use the hypothesis that (X, τ, \leq) be T_{1}-ordered only to insure that X is embedded in $w_{0} X$, that is, only to insure that $\{\mathcal{S}(x)\}$ is a maximal c-filter or $(\mathcal{S}(d(x)), \mathcal{S}(i(x)))$ is a maximal bifilter, where $\mathcal{S}(A)$ represents the collection of supersets of A. Thus, the c-filter construction of $w_{0} X$ only uses T_{1}-ordered to imply the T_{1}^{K}-ordered property, that $\{x\}=C(x)$ so that $\mathcal{S}(x)$ is a maximal c-filter. It follows that Kent's c-filter construction of $w_{0} X$ remains valid for any T_{1}^{K}-ordered space.

If X is T_{1}-ordered, Choe and Park consider the points of $X \subseteq w_{0} X$ to be the maximal bifilters $(\mathcal{S}(d(x)), \mathcal{S}(i(x)))=(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$. This equality need not hold if X is only assumed to be T_{1}^{K}-ordered, so to ensure that the bifilters have
bases of closed sets, we must use $(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ for the construction of the Wallman ordered compactification of a T_{1}^{K}-ordered space. With this modification, the proof in [2] that $(\mathcal{S}(d(x)), \mathcal{S}(i(x)))$ is a maximal bifilter for all $x \in X$ does not show that the bifilter $(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ is maximal if X is T_{1}^{K}-ordered. We remedy this situation with the following Lemma.

Lemma 17. If X is a convex T_{1}^{K}-ordered topological space and $x \in X$, then $(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ is a maximal bifilter.

Proof. It is easy to see that $(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ is a bifilter. If it is not maximal, then there exists a bifilter $(\mathcal{F}, \mathcal{G}) \supseteq(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ with either $\mathcal{S}(D(x)) \neq \mathcal{F}$ or $\mathcal{S}(I(x)) \neq \mathcal{G}$. The cases are dual, so we will only consider the case $\mathcal{S}(D(x)) \neq \mathcal{F}$. Since \mathcal{F} has a base of closed decreasing sets, there exists a closed decreasing set $F \in \mathcal{F}$ such that $F \notin \mathcal{S}(D(x))$, or equivalently, $D(x) \nsubseteq F$. Since $D(x) \in \mathcal{F}$, we have $A=D(x) \cap F \in \mathcal{F}$. Now $A \subseteq F$ implies $D(x) \nsubseteq A$, so $x \notin A$. We also have $I(x) \subseteq X \backslash A$, for if $y \in I(x) \cap A \subseteq I(x) \cap D(x)$, then we have the contradiction that $y=x \notin A$ since, by the T_{1}^{K}-ordered property, $I(x) \cap D(x)=\{x\}$. Thus, we have $X \backslash A \in \mathcal{S}(I(x)) \subseteq \mathcal{G}$ and $A \in \mathcal{F}$, contradicting that $\mathcal{F} \vee \mathcal{G}$ exists. This shows that the bifilter $(\mathcal{S}(D(x)), \mathcal{S}(I(x)))$ is maximal.

The Wallman ordered compactification of a T_{1}-ordered space need not be T_{1} ordered, but the theorem below shows the advantage of the T_{1}^{K}-ordered property.

Theorem 18. If X is any convex T_{1}^{K}-ordered topological space, the Wallman ordered compactification $w_{0} X$ is T_{1}^{K}-ordered.

Proof. We will show that $w_{0} X$ satisfies the characterization of T_{1}^{K}-ordered given in Theorem 10 (a). Suppose \mathcal{F} and \mathcal{G} are distinct maximal c-filters on X, that is, \mathcal{F} and \mathcal{G} are distinct points in $w_{0} X$. Now either $I(\mathcal{G}) \nsubseteq \mathcal{F}$ or $I(\mathcal{G}) \subseteq \mathcal{F}$. In case $I(\mathcal{G}) \nsubseteq \mathcal{F}$, there exists $I(G) \in I(\mathcal{G}) \subseteq \mathcal{G}$ with $I(G) \notin \mathcal{F}$. Since \mathcal{G} is a filter and \mathcal{F} is maximal, it follows that $X \backslash I(G) \notin \mathcal{G}$ and $X \backslash I(G) \in \mathcal{F}$, so that $\mathcal{G} \notin(X \backslash I(G))^{*}$ and $\mathcal{F} \in(X \backslash I(G))^{*}$. Now $(X \backslash I(G))^{*}$ is an open decreasing neighborhood of \mathcal{F} in $w_{0} X$ which excludes \mathcal{G}. In case $I(\mathcal{G}) \subseteq \mathcal{F}$, we have $D(\mathcal{G}) \nsubseteq \mathcal{F}$, for otherwise $I(\mathcal{G}) \vee D(\mathcal{G})=C(\mathcal{G})=\mathcal{G} \subseteq \mathcal{F}$, contradicting the maximality of \mathcal{G}. Now there exists $D(G) \in \mathcal{G}$ with $D(G) \notin \mathcal{F}$, and the dual argument of the previous case shows that $(X \backslash D(G))^{*}$ is an open increasing neighborhood of \mathcal{F} in $w_{0} X$ which excludes \mathcal{G}. In either case, we have found that $\mathcal{G} \neq \mathcal{F}$ implies $\mathcal{G} \notin \bigcap\{$ open monotone neighborhoods of $\mathcal{F}\}$, and it follows that $w_{0} X$ is T_{1}^{K}-ordered.

We mention that the expected properties of the Wallman ordered compactification remain valid even when the construction is applied to T_{1}^{K}-ordered topological spaces. For example, if X is convex and T_{1}^{K}-ordered, $\varphi: X \rightarrow w_{0} X$ is the natural embedding, and $f: X \rightarrow Y$ is a continuous increasing function from X into an arbitrary compact T_{2}-ordered space Y (i.e., Y is compact and the graph of its order is closed in $Y \times Y$), then there exist a unique continuous increasing function $\bar{f}: w_{0} X \rightarrow Y$ such that $\bar{f} \circ \varphi=f$.

References

[1] K. Belaid, O. Echi, and S. LazaAr, $T_{(\alpha, \beta)}$-spaces and the Wallman compactification, Internat. J. Math. \& Math. Sci. 68 (2004), 3717-3735.
[2] T. H. Choe and Y. S. Park, Wallman's Type Order Compactification, Pacific J. Math. 82 (2) (1979), 339-347.
[3] A. S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, The Amer. Math. Monthly 68 (9) (1961), 886-893.
[4] B. P. Dvalishvili, Bitopological Spaces: Theory, Relations With Generalized Algebraic Structures, and Applications, Vol. 199, North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2005.
[5] D. C. Kent, On the Wallman Order Compactification, Pacific J. Math. 118 (1985), 159-163.
[6] D. C. Kent and T. A. Richmond, Separation properties of the Wallman ordered compactification, Internat. J. Math. \& Math. Sci.. 13 (2) (1990), 209-222.
[7] H.-P. A. Künzi and T. A. Richmond, Completely regularly ordered spaces versus T_{2}-ordered spaces which are completely regular, Topology Appl. 135 (1-3) (2004), 185-196.
[8] H.-P. A. Künzi and T. A. Richmond, T_{i}-ordered reflections, Applied General Topology 6 (2) (2005), 207-216.
[9] E. P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. (3) 17 (1967), 241-256.
[10] S. D. McCartan, Separation axioms for topological ordered spaces, Proc. Cambridge Philos. Soc. 64 (1968), 965-973.
[11] D. N. Misra and K. K. Dube, Pairwise R_{0}-space, Annales de la Société Scientifique de Bruxelles 87, I (1973), 3-15.
[12] M. MrŠević, On bitopological separation axioms, Math. Vesnik 38 (1986), 313-318.
[13] M. Mršević, On pairwise R_{0} and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (78) (1986), 141-148.
[14] M. G. Murdeshwar and S. A. Naimpally, Quasi-Uniform Topological Spaces, Noordhoof, Groningen, 1966.
[15] L. Nachbin, Topology and Order., Van Nostrand Math. Studies 4, Princeton, N. J., 1965.
[16] K. R. Nailana, Strict complete regularity in the categories of bitopological spaces and ordered topological spaces, Publ. Math. Debrecen 58 (4) (2001), 693-705.
[17] I. Reilly, On Pairwise R_{0} Spaces, Annales de la Société Scientifique de Bruxelles 88, III (1974), 293-296.
[18] M. J. Saegrove, Pairwise completely regularity and compactification in bitopological spaces, J. London Math. Soc. (2) 7 (1973), 286-290.
[19] J. SWART, Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetensh. Proc. Ser. A 74 Indag. Math. 33 (1971), 135-145.
[20] M. R. ŽIžovic, Some properties of bitopological spaces, Math. Vesnik 11 (26) (1974), 233-237.

HANS-PETER A. KÜNZI
DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
UNIVERSITY OF CAPE TOWN
RONDEBOSCH 7701
SOUTH AFRICA
E-mail: hans-peter.kunzi@uct.ac.za
AISLING E. MCCLUSKEY
DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF IRELAND, GALWAY
GALWAY
IRELAND
E-mail: aisling.mccluskey@nuigalway.ie
THOMAS A. RICHMOND
DEPARTMENT OF MATHEMATICS
WESTERN KENTUCKY UNIVERSITY
BOWLING GREEN, KY 42101
USA
E-mail: tom.richmond@wku.edu
(Received March 3, 2008; revised June 25, 2008)

[^0]: Mathematics Subject Classification: 54F05, 54D10, 54D35, 54A10, 54E55, 18B30, 06F30.
 Key words and phrases: ordered topological space, T_{1}-ordered, T_{0}-ordered, R_{0}-ordered, $T_{1}^{K_{-}}$ ordered, R_{0}^{K}-ordered, Wallman ordered compactification, ordered reflection.
 Hans-Peter Künzi was partially supported by the South African NRF Grant FA2006022300009 during his stay at the National University of Ireland, Galway, in September 2007.

