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Abstract. If βoX represents the Stone-Čech ordered compactification of an
ordered topological space (X, τ,≤) and A,B is a separation of X, we investigate
when βoA, βoB form a separation of βoX. As an application, we show that
there is no totally ordered topological space X which is homeomorphic and order
isomorphic to its Stone-Čech ordered remainder βoX − X.

1. Introduction

If X is a topological space, C∗(X) represents the set of all continuous bounded

real-valued functions on X. If X ⊆ Y and every f ∈ C∗(X) has a continuous

bounded real-valued extension to Y , then we say X is C∗-embedded in Y . For

each f ∈ C∗(X), let If be a compact interval containing f(X). Recall that the

Stone-Čech compactification βX of a completely regular topological space X is

the closure of e(X), where e : X →
∏

f∈C∗(X) If is the evaluation map defined by

e(x) =
∏

f∈C∗(X) f(x). This construction of βX essentially includes a copy of each

f ∈ C∗(X) in the f th coordinate of the product. Thus, every f ∈ C∗(X) has a

continuous bounded extension to βX, namely, πf ◦ e, so X is C∗-embedded in βX.

Indeed, the more general universal extension property of the Stone-Čech com-

pactification is one of its most important properties: If Y is any compact T2 topo-

logical space, and f : X → Y is continuous, then f has a continuous extension

f̂ : βX → Y . In the language of category theory, this says that βX is the com-

pact T2 reflection of X. The related study of reflections and weak reflections has

received more recent attention, as seen in [8, 9, 14, 15]. Further information on

compactifications may be found in [3, 19]. Their relations to C∗(X) are studied

extensively in [7].

An ordered topological space (X, τ,≤) is a topological space (X, τ) with a partial

order ≤. The set of all continuous bounded increasing real-valued functions on
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(X, τ,≤) will be denoted by C∗↑(X). An ordered topological space is T2-ordered

if the graph of the order is closed in X × X with the product topology, and is

completely regular ordered if (a) for every y ̸≤ x in X, there exists f ∈ C∗↑(X)

with f(x) < f(y), and (b) for every closed set F ⊆ X and every a ̸∈ F , there exist

f, g ∈ C∗↑(X) such that f(a) = −g(a) = 1 and f(x) ∧ −g(x) ≤ 0 for all x ∈ F . A

subset D of a poset X is decreasing if d ∈ D and x ≤ d imply x ∈ D. Increasing

sets are defined dually. A subset C of a poset is convex if c, d ∈ C and c ≤ x ≤ d

imply x ∈ C. An ordered topological space X is locally convex if each point has

a neighborhood base of convex sets. Every locally convex topology τ on a totally

ordered space X is coarser than the interval topology. That is, all rays (a,→) and

(←, b) and intervals (a, b) are always open in such topologies. See [6, 2].

A compact T2-ordered space (X∗, τ ∗,≤∗) is an ordered compactification of the

ordered topological space (X, τ,≤) if (X, τ) is dense in (X∗, τ ∗) (that is, (X∗, τ ∗) is

a compactification of (X, τ)) and ≤∗ is an extension of ≤. The Stone-Čech product

construction applied to an ordered topological space (X, τ,≤), using C∗↑(X) as

the index set, produces the Stone-Čech ordered compactification βoX, which is

also called the Nachbin compactification. As expected, X is C∗↑-embedded in βoX

and every continuous increasing function f from X to an arbitrary compact T2-

ordered topological space Y has a continuous increasing extension f̂ to βoX. A

result of this extension property is that βoX is the largest ordered compactification

of X, when the compactifications of X are ordered by αX ≥ γX if and only if

there exists a continuous increasing function f : αX → γX which leaves the points

of X fixed. According to this order, if αX ≥ γX as ordered compactifications,

then either αX > γX as topological compactifications or αX = γX as topological

compactifications and αX has a smaller order than γX. If X is a totally ordered

topological space, then βoX is totally ordered and carries the interval topology.

See [6, 16, 2, 12, 1].

A poset in which every nonempty subset has a supremum and an infimum is a

complete lattice. If (X, τ,≤) is a compact totally ordered topological space, then

it is a complete lattice: If X is infinite and there exists a nonempty subset S ⊆ X

with no supremum, then C = {(←, x) : x ∈ S} ∪ {(b,→) : b is an upper bound of

S} is an open cover of X with no finite subcover.

The disjoint union of sets A and B will be denoted A
◦
∪ B.

2. Ordered Compactifications of Disconnected Spaces

We mention the following old result, together with its ordered analog.

Proposition 1. (a) A subspace S of a topological space (X, τ) is C∗-embedded in

X if and only if βS = clβXS.

(b) A subspace S of an ordered topological space (X, τ,≤) is C∗↑-embedded in X if

and only if βoS = clβoXS, as ordered topological spaces.
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Part (a) appears in [19, Proposition 1.48]. Part (b) follows by duplicating that

proof and using the fact ([16, Theorem 6, p. 49]) that continuous increasing func-

tions on a compact subspace of a normal space can be extended.

We will investigate when ordered versions of the following intuitive topological

result hold. Recall that a separation of a topological space X is a pair of nonempty

disjoint open subsets whose union is X, and X is connected if and only if it has no

separation.

Proposition 2. If A and B form a separation of a topological space X, then

βA = clβXA, βB = clβXB, and these sets are disjoint, providing a separation of

βX.

Proof. Suppose A,B is a separation of topological space X. If f ∈ C∗(A) has

range [−M,M ], taking f̂(B) = M + 1 gives a continuous extension to X = A∪B.

Thus, A is C∗-embedded in X, so βA = clβXA by Proposition 1 (a). Similarly,

βB = clβXB. Now since A and B form a separation of X, there exists a continuous

function s : X → R with s(A) = 0 and s(B) = 1. If ŝ is the extension of s to

βX, then ŝ(clβXA) = 0 and ŝ(clβXB) = 1, so clβXA and clβXB are disjoint. Since

βX = clβXX = clβX(A ∪ B) = clβXA ∪ clβXB, we see that clβXA and clβXB form

a separation of βX. ¤
To get the full strength of this result in the ordered setting, we would need

to define an ordered separation of (X, τ,≤) as a pair of subsets A,B of X such

that there exists a continuous increasing surjection s : X → {0, 1}, where {0, 1}
has the usual topology and order. However, this definition is too restrictive to be

widely applicable. For example, since s−1(0) = s−1((←, 0.5)) is a decreasing set and

s−1(1) = s−1((.5,→)) is an increasing set, an ordered separation must partition X

into one increasing set and one decreasing set, not permitting any separation into

nonconvex blocks A and B. So, we will not consider this strong form of “ordered

separation”, but only (topological) separations of ordered topological spaces. We

start with totally ordered spaces. We will only consider totally ordered spaces

X which are locally convex; by [6, Theorem 4.31], this is equivalent to X being

completely regular ordered.

Proposition 3. If A and B form a separation of a locally convex totally ordered

topological space X and clβoXA ∩ clβoXB = ∅, then βoA = clβoXA and βoB =

clβoXB, and thus these sets form a separation of βoX.

Proof. Under the hypotheses, βoX = βo(A ∪ B) = clβoX(A ∪ B) = clβoXA
◦
∪

clβoXB. Note that clβoXA is locally convex: For any x ∈ clβoXA, since clβoXA =

βoX − clβoXB is open and βoX has a base of convex sets, there exists a convex

neighborhood N of x with N ⊆ clβoXA.

In [12], βoX is constructed as the set of all closed convex ultrafilters on X, and

consequently, each closed convex ultrafilter on X has a limit in βoX. Suppose F is
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an arbitrary closed convex ultrafilter on X. Now F → x ∈ βoX = clβoXA∪clβoXB,

so x ∈ clβoXA or x ∈ clβoXB. Assume x ∈ clβoXA. Let N be a convex neighborhood

of x contained in clβoXA. Now N is an element of the filter V(x) of neighborhoods

of x, and F → x if and only if V(x) ⊆ F , so N ∈ F . The restriction F|N of F to

N is a closed convex filter on X which contains F , so F|N = F is a closed convex

ultrafilter on A. Conversely, every closed convex ultrafilter G on A ⊆ X is a closed

convex ultrafilter on X. Thus, the set of closed convex ultrafilters on A equals the

set of closed convex ultrafilters on X converging to a point of clβoA. But, the set of

closed convex ultrafilters on A is βoA, and the set of closed convex ultrafilters on

X converging to a point of clβoXA is the set of points of βoX having a limit point

in clβoXA, which is clβoXA. Thus, clβoXA = βoA.

Similarly, clβoXB = βoB. ¤
If A and B are a separation of X, we note that the topological condition that

clβXA and clβXB are disjoint, which was part of the conclusion of Proposition 2,

had to be included in its ordered analog as part of the hypothesis in Proposition 3.

The following example illustrates that this additional hypothesis may fail.

Example 4. Consider the subsets of R defined by A = {(4n, 4n + 1) : n ∈ N}
and B = {(4n + 2, 4n + 3) : n ∈ N}, and X = A ∪ B, with the usual topology

and order. Now A and B clearly form a separation of X. Letting ∞X be the

maximum element of βoX, we see that since A and B are “interlaced” by the order

and βoX is locally convex, any neighborhood of ∞X intersects both A and B. That

is, ∞X ∈ clβoXA ∩ clβoXB.

A proof of Proposition 3 which avoids filters will follow from the following result.

Proposition 5. If A,B is a separation of a locally convex totally ordered space X,

then A and B are C∗↑-embedded in X.

Proof. Suppose g : A → [−M,M ] ⊆ R is continuous and increasing. Given

b ∈ B, if (←, b] ∩ A = ∅, define ĝ(b) = −M − 1. If (←, b] ∩ A ̸= ∅, define

ĝ(b) = sup(g((←, b] ∩ A)). This supremum must exist since [−M,M ] ⊆ R is a

complete lattice.

ĝ is increasing: The case a1 ≤ a2 in A follows since ĝ|A = g. If b1 ≤ b2 in B,

then (←, b1] ⊆ (←, b2], which implies ĝ(b1) ≤ ĝ(b2). If a ≤ b (a ∈ A, b ∈ B),

then a ∈ (←, b] ∩ A, so ĝ(a) ≤ ĝ(b). If b ≤ a (a ∈ A, b ∈ B), then every point of

(←, b] ∩ A is less than a, so ĝ(b) ≤ ĝ(a).

ĝ is continuous: We will show that for every neighborhood U of ĝ(x), there exists

a neighborhood N of x with ĝ(N) ⊆ U . If x = a ∈ A, then ĝ(a) = g(a) and by the

continuity of g, there exists a neighborhood N in A of a with g(N) ⊆ U . But since

A is open in X, N is open in X and ĝ(N) = g(N) ⊆ U . If x = b ∈ B, then since B

is open and locally convex, there exists a convex neighborhood N of b in X with

N ⊆ B. Then ĝ(N) = ĝ(b) ⊆ U , (since z ∈ N implies (←, z] ∩ A = (←, b] ∩ A
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because either [z, b] ⊆ N ⊆ B or[b, z] ⊆ N ⊆ B). The proof that B is C∗↑-

embedded in X is dual. ¤
Now a direct application of Proposition 1 (b) and Proposition 5 provides an

alternate proof of Proposition 3.

The example below shows that the result of Proposition 5 for totally ordered

topological spaces does not hold for arbitrary partially ordered spaces.

Example 6. If X is a T3.5-ordered locally convex partially ordered topological

space and A, B is a separation of X, then A need not be C∗↑-embedded in X. Let

A1 = [−1, 0) × {−1},
A2 = (0, 1] × {1},
A = A1 ∪ A2,

B = [−1, 1] × {0}, and

X = A ∪ B.

Give X the subspace topology from R2 and the “up” order (x, y) ≤ (z, w) if and

only if x = z and y ≤ w. Then X is T3.5-ordered and locally convex, and A,B is

a separation of X. Define f : A → {0, 1} by f(A1) = 1 and f(A2) = 0. Since the

order on A is discrete (i.e., equality), f is increasing and thus f ∈ C∗↑(A). Suppose

f̂ is a continuous increasing extension of f to X. Now(
−1

n
,−1

)
<

(
−1

n
, 0

)
⇒ 1 = f̂

(
−1

n
,−1

)
≤ f̂

(
−1

n
, 0

)
and(

1

n
, 0

)
<

(
1

n
, 1

)
⇒ f̂

(
1

n
, 0

)
≤ f̂

(
1

n
, 1

)
= 0.

Taking the limit as n → ∞ gives the contradiction that 1 ≤ f̂(0, 0) ≤ 0, so f

cannot be extended to a continuous increasing function on X.

Since A is not C∗↑-embedded in X, Proposition 1 (b) implies that βoA ̸= clβoXA.

We will show this directly. Since A = A1 ∪ A2 has the discrete order of equality

and A1 and A2 form a separation of A, we have βoA = βA = βA1

◦
∪ βA2. That is,

the Stone-Čech ordered compactification of A is the Stone-Čech compactification

of A with equality as the order. On the other hand, βX = β(A1∪A2∪B) = βA1

◦
∪

βA2

◦
∪ βB = βA1

◦
∪ βA2

◦
∪ B.

We can make this into an ordered compactification by imposing the order from

X together with α1 < α2 for all αi ∈ βAi −Ai (i = 1, 2). Since this is the smallest

possible order that makes βX into an ordered compactification, we have that this

ordered compactification is βoX. Now clβoXA = βA1

◦
∪ βA2 with the order α1 < α2

for all αi ∈ βAi − Ai (i = 1, 2). Thus, as topological spaces, βoA = clβoXA, but

they are not equal as ordered topological spaces since one carries equality as the

order and the other has a nontrivial order.
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3. Remainders

If αX is a compactification of X, the subspace αX − X is the associated re-

mainder. Hussak [10], Jackson [11], and Stannett [17, 18] investigate sequences of

iterated remainders of a completely regular space X, defined by X1 = βX − X

and for n ≥ 1, Xn+1 = βXn −Xn. They present the question of whether there are

spaces X for which the sequence of iterated remainders is eventually constant, up

to homeomorphism. For this to occur, we would have Xn ≈ Xn+1 = βXn − Xn,

where ≈ represents homeomorphism between topological spaces. Thus, a more

general question is whether there are spaces Y = Xn for which βY − Y ≈ Y .

We will use the results of the previous section to address the corresponding

question for remainders of ordered compactifications of totally ordered topological

spaces. We will show that if X is totally ordered and nonempty, then X is never

homeomorphic and order isomorphic to βoX − X. This also relates to a question

of Kovar [13], who defines disjoint topological spaces Z and W to be mutually

compactificable by K if there exists a compact space K = Z ∪W having Z and W

as subspaces, with every pair (z, w) ∈ Z × W separated by disjoint open sets in

K. Our result shows that a totally ordered nonempty space X is never mutually

compactificable with a copy of itself by βoX. For ordered topological spaces, by

X ≈ Y we mean X is homeomorphic to Y by a function which is also an order

isomorphism.

Proposition 7. If X is a locally convex totally ordered space and X ≈ βoX − X,

then the largest and smallest elements of βoX are elements of X.

Proof. Suppose the smallest element of βoX is a ∈ βoX. Since a is the limit

of points in X, there exists a decreasing net in X converging to a ̸∈ X, and

consequently, X has no smallest element. This contradicts X ≈ βoX − X. The

dual argument shows that the largest element of βoX is an element of X. ¤
Suppose f : X → βoX − X is a homeomorphism and order isomorphism. We

may view f as a function from X to βoX, and thus there is a unique continuous

increasing extension f̂ : βoX → βoX. Our next result addresses this extension.

Proposition 8. Suppose X is a locally convex totally ordered space. If f : X →
βoX−X is a homeomorphism and order isomorphism, then its continuous increas-

ing extension f̂ : βoX → βoX has no fixed points.

Proof. Since f maps X to βoX −X, clearly f fixes no points of X. By [5, Lemma

3.5.6] or [3, Theorem 1.6], if X is a dense subset of a Hausdorff space B, f̂ : B → Y

is continuous, and f̂ |X is a homeomorphism into Y , then f̂(B − X) ∩ f̂(X) = ∅.
Thus f̂(βoX−X)∩ f̂(X) = ∅, so for c ∈ βoX−X, we have f̂(c) ̸∈ f̂(X) = f(X) =

βoX − X, so f̂(c) ∈ X. ¤
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Now consider the sets

C = {x ∈ X : f(x) > x},
D = {x ∈ X : f(x) < x},
Ĉ = {x ∈ βoX : f̂(x) > x},

and D̂ = {x ∈ βoX : f̂(x) < x}.

If a is the smallest element of βoX, then f(a) = f̂(a) > a, so C and Ĉ are nonempty.

Similarly D and D̂ are nonempty. Since neither f nor f̂ have fixed points, C and

D partition X while Ĉ and D̂ partition βoX.

Because f̂ has no fixed points, Ĉ = {x ∈ βoX : f̂(x) ≥ x}, and, as expected,

this is a closed set: If c ∈ clβoXĈ, then there is a net cλ in Ĉ converging to

c. Now f̂(cλ) > cλ for all λ, and taking the limit (using continuity of f̂ , the

T2-ordered property of βoX, and the fact that f̂ has no fixed points), we have

f̂(c) > c, so c ∈ Ĉ. Thus, Ĉ = clβoXĈ. In fact, Ĉ = clβoXC: If there were

a point c ∈ Ĉ − clβoXC, then c ∈ βoX = clβoX(C ∪ D) = clβoXC ∪ clβoXD, so

c ∈ clβoXD ⊆ D̂, contrary to c ∈ Ĉ. Since X is a subspace of βoX, it follows

that C is closed in X. Similar arguments apply to D and D̂. We summarize these

results.

Proposition 9. With C,D, Ĉ and D̂ as defined, C and D form a separation of X

while Ĉ and D̂ form a separation of βoX.

Now we give the main result of this section.

Theorem 10. If X is a nonempty totally ordered topological space, then X ̸≈
βoX − X.

Proof. Suppose to the contrary that f : X → βoX−X ⊆ βoX is a homeomorphism

and an order isomorphism. Consider the unique continuous increasing extension

f̂ : βoX → βoX, and let C,D, Ĉ, and D̂ be as defined above. Note that C and D

satisfy the hypotheses of Proposition 3. Now f : X → βoX − X may be viewed

as f : C ∪ D → (βoC ∪ βoD) − (C ∪ D) = (βoC − C) ∪ (βoD − D). We now

show that f |C is a homeomorphism and order isomorphism from C to βoC − C.

Every z ∈ βoC − C ⊆ βoX − X is f(x) for some x ∈ X. If x ∈ D then f(x) < x,

so f̂(f(x)) < f̂(x) = f(x), so z = f(x) ∈ D̂, contrary to z ∈ βoC = Ĉ. Thus,

f |C : C → βoC − C is onto. It is one-to-one and continuous as a restriction, and

similarly is an order isomorphism. Also, (f |C)−1 = f−1|f(C) is continuous. Thus,

C ≈ βoC − C by the function f |C . But now Proposition 7 applies, giving that the

largest element w of βoC is in C and satisfies f(w) < w. This contradicts f(x) > x

for all x ∈ C. ¤
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We present a second proof of Theorem 10.

Proof. Suppose to the contrary that f : X → βoX−X ⊆ βoX is a homeomorphism

and an order isomorphism. Consider the unique continuous increasing extension

f̂ : βoX → βoX. Now βoX is a complete lattice. By the Tarski-Knaster fixed point

theorem (see [4]), f̂ should have a fixed point, but this contradicts Proposition 9.

¤
Thus, there are no nonempty totally ordered topological spaces for which the

sequence of iterated remainders is constant.

The example below shows that the sequence of iterated remainders may become

periodic. We recall (see [12]) that for a totally ordered space, βoX consists of all

the closed convex ultrafilters on X, and βoX carries the interval topology.

Example 11. Let X1 = Q, the set of rational numbers with the usual topology

and order. For any irrational a, {(a, a+ϵ]∩Q : ϵ > 0} and {[a−ϵ, a)∩Q : ϵ > 0} are

bases for nonconvergent closed convex ultrafilters on Q, so, besides ±∞, βoQ − Q
consists of two copies a− and a+ of each irrational a, with x < a− < a+ < y for

any x, y ∈ Q such that x < a < y. Now X2 = βoX1 −X1 has nonconvergent closed

convex ultrafilters with bases {(r, r + ϵ] : ϵ > 0} and {[r − ϵ, r) : ϵ > 0} for each

rational r, so X3 = βoX2 − X2 consists of two copies r− and r+ of each rational r,

with x < r− < r+ < y for any x, y ∈ X2 with x < r < y. Since [r+, s−] = (r−, s+)

is open in X3, we see that X3 ̸≈ X1 = Q since no open set in X1 has a least

element. Now βoX3 will restore two copies of each irrational, as well as ±∞, so

X4 = βoX3 −X3 ≈ X2, and the sequence of iterated remainders becomes periodic.

We note that if X1 is the real line with the discrete topology and usual order,

βoX1 adds ±∞ and two copies a− and a+ of each real number a. But X2 =

βoX1 − X1 is compact, so X3 = βoX2 − X2 = ∅ and the sequence terminates.
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