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NEIGHBORHOOD SPACES AND CONVERGENCE

TOM RICHMOND AND JOSEF ŠLAPAL

Abstract. We study neighborhood spaces (X,ν) in which
the system ν(x) of neighborhoods at a point x ∈ X is a sys-
tem of subsets of X containing x which need not be a filter,
but must only be a stack, i.e., closed under the formation
of supersets. We investigate continuity, separation, compact-
ness, and convergence of centered stacks in this setting.

1. Neighborhood spaces

Before the definition of a topological space was standardized to
its current form, Felix Hausdorff [6] and others defined topological
spaces in terms of a system of neighborhoods at each point. This
approach has continued to be fruitfully studied (cf. [3]) under the
name of neighborhood spaces, with various conditions on the sys-
tems of neighborhoods at each point. Replacing filters of neighbor-
hoods by p-stacks of neighborhoods, Kent and Min [7] and Min [8]
have investigated neighborhood spaces in which the intersection of
two neighborhoods of a point x need not be a neighborhood of x, but
must only be nonempty (i.e., must have the pairwise intersection
property). Thus, the neighborhoods of a given point need not form
a filter. We continue the study of neighborhood spaces from [7].
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In particular, we generalize some usual topological concepts includ-
ing separation and compactness to these spaces and study their be-
havior. We also introduce a concept of convergence in a neighbor-
hood space and study its properties. To express our convergence,
we use centered stacks (called rasters) while in [7] p-stacks, i.e.,
stacks with the pairwise-intersection property, are used.

Suppose R is a collection of subsets of a nonempty set X . Con-
sider the following conditions on R.
(a) A ∈ R, A ⊆ B ⇒ B ∈ R. (R is expansive or is a stack.)
(b) A1, A2 ∈ R ⇒ A1 ∩ A2 6= ∅. (R has the pairwise intersection
property.)
(b′) A1, A2, . . . , An ∈ R ⇒ A1 ∩ A2 ∩ . . .∩ An 6= ∅. (R is centered ,
or has the finite intersection property.)

If R satisfies (a) and (b), it is called a p-stack (see [7], [8]). A
raster on X is a collection R of subsets of X satisfying conditions
(a) and (b′) above. Clearly every raster is a p-stack and every filter
is a raster, but not conversely. A centered system B of subsets of X
is called a base of a raster R on X if R is the smallest raster con-
taining B, i.e., if R= 〈B〉 where 〈B〉={B : ∃A ∈ B, A ⊆ B ⊆ X}.
We then say that B generates R. For every set X , RX denotes the
set of all rasters on X and, for every point x ∈ X , ẋ denotes the
filter of all supersets of {x}.

A neighborhood space is a pair (X, ν) where X is a set and ν :
X → RX is a map such that, for every x ∈ X , ν(x) ⊆ ẋ. Then
ν(x) is a raster for each x ∈ X which will be called the neighborhood
raster at x and the elements of ν(x) will be called neighborhoods of
x. Since every neighborhood p-stack is a raster, the neighborhood
spaces introduced here coincide with those studied in [7].

In the natural way, we may define interior and closure operators
in terms of neighborhoods:
Iν(A) = {x ∈ A : A ∈ ν(x)},
clν(A) = {x ∈ X : A ∩ V 6= ∅ for all V ∈ ν(x)}.
It is evident that Iν(X) = X , clν is grounded (clν∅ = ∅), Iν is
intensive (Iν(A) ⊆ A for all A ⊆ X), clν is extensive (A ⊆ clν(A)
for all A ⊆ X) and both Iν and clν are monotonic. A subset A ⊆ X
is said to be open (respectively, closed), if Iν(A) = A (respectively,
clν(A) = A).

Let (X, ν) be a neighborhood space and, for every subset
A ⊆ X , let A denote the complement of A in X , i.e., A = X −A.
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We clearly have clν(A) = Iν(A) and, consequently, A ⊆ X is closed
if and only if its complement A is open.

Because of the above facts, neighborhood spaces may be studied
as forms of closure spaces, where the emphasis is on the closure
operator rather than the system of neighborhoods at each point.

The following statement immediately follows from Theorem 2.12
of [7].

Proposition 1.1. Let (X, ν) be a neighborhood space. Then
(a) Iν(A ∩ B) = Iν(A) ∩ Iν(B) for all A, B ⊆ X if and only if

ν(x) is a filter for every x ∈ X,
(b) Iν is idempotent if and only if ν(x)=〈{A⊆X: Iν(A)∈ν(x)}〉

for all x ∈ X.

Recall that a closure operator cl on X is additive if cl(A∪ B) =
cl(A)∪ cl(B) for all A, B ⊆ X .

Corollary 1.2. Let (X, ν) be a neighborhood space. Then
(a) clν is additive if and only if ν(x) is a filter for every x ∈ X,
(b) clν is idempotent if and only if ν(x)=〈{A⊆X: Iν(A)∈ν(x)}〉

for all x ∈ X.

Remark 1.3. (1) If a neighborhood space (X, ν) has the property
that ν(x) is a filter for every x ∈X and ν(x) = 〈{A⊆X : Iν(A) ∈
ν(x)}〉 for all x ∈ X , then clν is a Kuratowski closure operator on
X (and vice versa) by Corollary 1.2. Therefore, we will call (X, ν)
a topological space in this case (of course, every usual topological
space is a neighborhood space with neighborhoods given in the
usual way).

(2) A grounded, extensive and additive (hence also monotonic)
closure operator is called a pretopology (or a Čech closure operator -
cf. [1]). By Corollary 1.2, clν is a pretopology if and only if ν(x) is a
filter for every x ∈ X . Therefore, we will call (X, ν) a pretopological
space in this case. (Of course, every usual pretopological space is a
neighborhood space - see [1].)

(3) A grounded, extensive, monotonic and idempotent closure
operator is called a supratopology - cf. [7], [8]. By Corollary 1.2,
clν is a supratopology if and only if (X, ν) has the property that
ν(x) = 〈{A ⊆ X : Iν(A) ∈ ν(x)}〉 for all x ∈ X . Therefore, we will
call (X, ν) a supratopological space in this case.
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(4) Let (X, ν) be a neighborhood space with an open base; that
is, for every x ∈ X , ν(x) has a base consisting of open sets. Then
Iν (respectively, clν) is idempotent by Proposition 1.1(b).

Let (X, ν) and (Y, µ) be neighborhood spaces. We say that (X, ν)
is a subspace of (Y, µ) if X ⊆ Y and ν(x) = {X ∩ A : A ∈ µ(x)}.

We note that if R is a raster on X and f : X → Y a function,
then f(R) need not be a raster, but only a centered system. We
will interpret the image raster f(R) to mean the raster generated
by {f(R) : R ∈ R}. Similar remarks apply to inverse images of
rasters.

A map f : (X, ν) → (Y, µ) is called continuous if and only if, for
every x ∈ X , µ(f(x)) ⊆ f(ν(x)) or, equivalently, f−1(µ(f(x))) ⊆
ν(x). By [7], Proposition 2.9, we have:

Proposition 1.4. Let f : (X, ν) → (Y, µ) be a map. Then the
following conditions are equivalent:

(a) f is continuous,
(b) f(clν(A)) ⊆ clµ(f(A)) for all A ⊆ X,
(c) f−1(Iµ(B)) ⊆ Iν(f−1(B)) for all B ⊆ Y .

Corollary 1.5. Let f : (X, ν) → (Y, µ) be a map. If f is continu-
ous, then f−1(B) is open whenever B ⊆ Y is open. The converse
is true provided that Iν is idempotent.

The previous Corollary and Remark 1.3(4) immediately imply:

Corollary 1.6. Let f : (X, ν) → (Y, µ) be a map and let ν(x) have
an open base for every x ∈ X. Then f is continuous if and only if
the inverse image under f of every open subset of Y is open.

2. Separation and compactness

Definition 2.1. A neighborhood space (X, ν) is said to be
(a) separated provided that, whenever x, y ∈ X are different

points, there are M ∈ ν(x) and N ∈ ν(y) with M ∩ N = ∅,
(b) compact if

⋂
T 6= ∅ for every centered system T of closed

subsets of (X, ν).

Separated neighborhood spaces are called T2 in [7]. Clearly,
(X, ν) is compact if and only if every open cover of (X, ν) has a
finite subcover. The example below shows that the concept of com-
pactness introduced here is strictly weaker than that given in [7],
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where a neighborhood space (X, ν) is said to be compact if every
cover A = {Ax; x ∈ X} of X where Ax ∈ ν(x) for every x ∈ X
has a finite subcover. Both concepts of compactness coincide for
neighborhood spaces with an open base.

Example 2.2. Let X = [0,∞) × (0, 1] ∪ {(0, 0)}. For (a, b) ∈
X \ {(0, 0)}, let N(a, b) be the union of the line segment from (0, 0)
through (a, b) extended to (c, 1) with the horizontal ray having left
endpoint (c, 1). Let N(0, 0) = {(0, 0)}. For each (a, b) ∈ X , take
ν(a, b) = 〈{N(a, b)}〉. Now {N(a, b) : (a, b) ∈ X} is a cover of X
by neighborhoods which has no finite subcover. If U is an open
set containing (0, 1), then N(0, 1) ⊆ U and U is a neighborhood of
each (x, y) ∈ N(0, 1), and thus U = X . It follows that any cover of
X by open sets has a finite subcover.

Theorem 2.3. A neighborhood space (X, ν) is separated if and only
if {x} =

⋂
{clν(N) : N ∈ ν(x)} for every point x ∈ X.

Proof. Let {x} =
⋂
{clν(N) : N ∈ ν(x)} for every x ∈ X . Let x, y ∈

X be different points. Then there is N ∈ ν(x) with y /∈ clν(N).
Thus, y ∈ clν(N) = Iν(N) and we have N ∈ ν(y). As N ∩ N = ∅,
(X, ν) is separated.

Conversely, given a point x ∈ X , we clearly have x ∈⋂
{clν(N) : N ∈ ν(x)}. Suppose that {x} 6=

⋂
{clν(N) :N ∈ ν(x)}.

Then there is a point y ∈ X , y different from x, such that y ∈⋂
{clν(N) : N ∈ ν(x)}. Since y 6= x, there are M ∈ ν(y) and

N ∈ ν(x) with M ∩ N = ∅. Consequently, M ⊆ N , which yields
N ∈ ν(y). We have y ∈ Iν(N) = clν(N). Therefore, y /∈ clν(N),
which is a contradiction. �

The following two statements are obvious:

Theorem 2.4. Let (Y, µ) be a neighborhood space and (X, ν) a sub-
space of (Y, µ) such that X is closed in (Y, µ). If (Y, µ) is compact,
then (X, ν) is compact too.

Theorem 2.5. Let (X, ν) and (Y, µ) be neighborhood spaces and
f : (X, ν) → (Y, µ) a continuous surjection. If (X, ν) is compact,
then (Y, µ) is compact too.

Remark 2.6. Further statements may be obtained by reformulating
some well-known facts about topological spaces to our neighbor-
hood setting. For example, we have: Let (Y, µ) be a separated
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neighborhood space such that clµ is additive and idempotent (so
that clµ is a Kuratowski closure operator). If (X, ν) is a compact
subspace of (Y, µ), then X is closed in (Y, µ).

Definition 2.7. Let (Xi, νi), i ∈ I be a system of neighborhood
spaces. The product of this system is a neighborhood space (X, ν)
where X =

∏
i∈I Xi and ν(x) = 〈{

⋂
i∈I ′ pri−1Ni : I ′ ⊆ I finite and

Ni ∈ ν(xi) for all i ∈ I ′}〉 for every x = (xi : i ∈ I) ∈ X .

In [7], the Cartesian product of neighborhood spaces is used
(i.e., the product that is the initial neighborhood space with re-
spect to projections). This product differs from the one introduced
in Definition 2.7. Unlike the Cartesian product of neighborhood
spaces, the product from Definition 2.7 has the property that, for
topological spaces, it coincides with their usual (Cartesian) prod-
uct. Consequently, the following, Tychonoff theorem for neighbor-
hood spaces (unlike the Tychonoff theorem proved in [7]) general-
izes the well-known Tychonoff theorem for topological spaces.

Theorem 2.8. Let (Xi, νi), i ∈ I be a system of supratopological
spaces. Then the product of this system is compact if and only if
(Xi, νi) is compact for every i ∈ I.

Proof. Let (X, ν) be the product of the system (Xi, νi), i ∈ I .
If (X, ν) is compact, then all (Xi, νi), i ∈ I , are compact by the
previous theorem because all projections are clearly continuous sur-
jections. Conversely, let (Xi, νi) be compact for every i ∈ I and let
S be a centered class of closed subsets of X . Then, by the Axiom
of Choice (Zorn’s Lemma), there is a maximal centered class T
of subsets of X with S ⊆ T (of course, T is an ultrafilter). The
maximality of T implies that (1) T is closed under finite intersec-
tions and (2) T contains every subset M ⊆ X having the property
M ∩ T 6= ∅ for all T ∈ T . Since T is centered and clνi is idempo-
tent for every i ∈ I , {clνi(pri(T ))} : T ∈ T } is a centered system
of closed subsets of Xi for all i ∈ I . Thus, as (Xi, νi) is compact
for every i ∈ I , we have

⋂
T∈T clνi(pri(T )) 6= ∅ for every i ∈ I .

Let xi ∈
⋂

T∈T clνi(pri(T )) be an arbitrary point and Ni ∈ ν(xi)
an arbitrary neighborhood. Then Ni ∩ pri(T ) 6= ∅ for each T ∈ T .
Consequently, we have pr−1

i (Ni)∩T 6= ∅ for every T ∈ T . It follows
from (2) that pr−1

i (Ni) ∈ T . Put x = (xi : i ∈ I). Then, by the
assumptions of the statement, there exists a base B of ν(x) given
by B = {

⋂
i∈I ′ pri−1Ni : I ′ ⊆ I finite and Ni ∈ ν(xi) for all i ∈ I ′}.
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Thus, B ⊆ T by (1). Therefore, every T ∈ T has the property
T ∩ P 6= ∅ for all P ∈ B. Hence, x ∈ clν(T ) for every T ∈ T . It
follows that

⋂
T∈T clν(T ) 6= ∅. Since S ⊆ {clν(T ) : T ∈ T }, we

have
⋂
S 6= ∅. �

Supratopological (neighborhood) spaces which are not topologi-
cal in general are quite common and occur in various branches of
mathematics, particularly in algebra, geometry and logic - see the
following example:

Example 2.9. (1) Let G be a universal algebra (of a given type)
having no nullary operations and let X be the underlying set of G.
For every subset A ⊆ X , let 〈A〉 be the subalgebra of G generated
by A. Put ν(x) = {A ⊆ X ; x /∈ 〈A〉} for each x ∈ X . Then
(X, ν) is a supratopological space. Clearly, clν(A) = 〈A〉 whenever
A ⊆ X .

(2) Let V be a (real) vector space and, for every subset A ⊆ V ,
let [A] denote the convex hull of A. Put ν(x) = {A ⊆ V ; x /∈ [A]}
for all x ∈ V . Then (V, ν) is a supratopological space. Clearly,
clν(A) = [A] whenever A ⊆ V .

(3) In a formal (axiomatic) theory, let ` be the derivation defined
on the set F of all formulas (including all axioms). If A ⊆ F and
ϕ ∈ F , let A 6` ϕ mean that ϕ is not derivable from A. For
every ϕ ∈ F , put ν(ϕ) = {A ⊆ F ; A 6` ϕ}. Then (F , ν) is a
supratopological space. Clearly, clν(A) = {ϕ ∈ F ; A ` ϕ} for all
A ⊆ X .

Remark 2.10. The Tychonoff theorem for topological spaces per-
mits the construction of compactifications. Analogously to topo-
logical spaces, a compactification of a separated neighborhood space
(X, ν) is a compact separated neighborhood space (Y, µ) and a
continuous injection α : X → Y with continuous inverse f−1 :
α(X) → X such that clµ(α(X)) = Y . Let C∗(X) be the collection
of continuous, bounded real-valued functions on (X, ν). A subcol-
lection C ⊆ C∗(X) is said to separate points from closed sets if
x 6∈ clν(F ) implies there exists f ∈ C with f(x) 6∈ clR(f(clν(F )))
(where clR denotes the Kuratowski closure operator on R). A
separated neighborhood space (X, ν) is said to be completely regular
if C∗(X) separates points from closed sets. If (X, ν) is a separated
neighborhood space and C ⊆ C∗(X) separates points from closed
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sets, then the evaluation map eC : X → Πf∈CclR(f(X)) defined by
prf (eC(x)) = f(x) is a continuous injection and for each A ⊆ X ,
eC(Iν(A)) is open, and it follows that eC embeds X densely into
cl(eC(X)), giving a compactification of (X, ν). Taking C = C∗(X)
gives the largest compactification (in the usual order) known as the
Čech-Stone compactification. See [2].

3. Convergence

Let X =
∏

i∈I Xi and Bi ∈ RXi for each i ∈ I . As usual, we put∏
i∈I Bi = {

∏
i∈I Mi : Mi ∈ Bi for each i ∈ I}. Clearly,

∏
i∈I Bi is

centered but in general it is not a raster. We will interpret
∏

i∈I Bi

to be a raster, namely the raster generated by
∏

i∈I Bi.

Definition 3.1. Let (X, ν) be a neighborhood space, x ∈ X a point
and R ∈ RX .

(a) We say that R converges to x relative to ν, in symbols
R ν→ x, if ν(x) ⊆ R.

(b) A point x ∈ X is called a cluster point of R provided
that x ∈ clν(A) for each A ∈ R (i.e., provided that x ∈⋂

A∈R clν(A)).

Note that the definition of convergence given above is a restric-
tion of that from [7] where the convergence of p-stacks, not only
rasters, is considered.

Example 3.2. (1) If (X, ν) is a topological space and R a filter,
we obtain the usual convergence and cluster points.

(2) If (X, ν) is a pretopological space and R a filter, we obtain
the convergence and cluster points introduced in [1].

Remark 3.3. Clearly, we have
(1) ν(x) ν→ x for all x ∈ X ,
(2) Iν(A) = {x ∈ A : A ∈ R whenever R ν→ x} for all A ⊆ X

and
(3) a map f : (X, ν) → (Y, µ) is continuous if and only if for all

x ∈ X , R ν→ x implies f(R)
µ→ f(x).

For the usual closure in topological spaces, as well as for the
closure in neighborhood spaces defined in terms of Kent and Min’s
p-stacks, we have

clν(A) = {x ∈ X : ∃ p-stack H such that H ν→ x and A ∈ H}.
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This property depends upon the fact that the closure was defined
in terms of the intersection of two sets A ∩ V . Thus, this equality
need not hold in the raster setting. In general, we have only

clν(A) ⊇ {x ∈ X : ∃R ∈ RX such that R ν→ x and A ∈ R},

as seen in the example below.

Example 3.4. For (a, b) 6= (0, 0) in R2, let ν((a, b)) be the raster
generated by the ε-balls centered at (a, b). Let ν((0, 0)) be the
raster generated by {B+

ε (0, 0) : ε > 0} ∪ {B−
ε (0, 0) : ε > 0} where

B+
ε (0, 0) = {(x, y) ∈ R2 : x ≥ 0, x2 + y2 < ε} and B−

ε (0, 0) =
{(x, y) ∈ R2 : x ≤ 0, x2 + y2 < ε}. Consider A = {(x, y) ∈ R2 :
x 6= 0}. Now A intersects every N ∈ ν((0, 0)), so (0, 0) ∈ clν(A).
However, A∩ B+

ε (0, 0)∩B−
ε (0, 0) = ∅, so there can be no raster R

containing A such that R ν→ (0, 0).

The following result is immediate.

Proposition 3.5. Let (X, ν) be a neighborhood space and A ⊆ X

a subset. Then clν(A) = {x ∈ X : ∃R ∈ RX with R ν→ x and
N ∩ A 6= ∅ for every N ∈ R}.

Proposition 3.6. Let (X, ν) be a neighborhood space and x ∈ X a
point. If there exists S ∈ RX with R ⊆ S and S ν→ x, then x is a
cluster point of R. The converse is true if (X, ν) is a pretopological
space and R is a filter.

Proof. Suppose there exists S ∈ RX with R ⊆ S and S ν→ x. Then
ν(x) ⊆ S implies A∩N 6= ∅ whenever A ∈ R and N ∈ ν(x). Thus,
x ∈ clν(A) for every A ∈ R. Hence x is a cluster point of R.
Conversely, let (X, ν) be a pretopological space and R be a filter.
Suppose that x is a cluster point of R. Put B = {A ∩ N : A ∈
R, N ∈ ν(x)}. Since x ∈ clν(A) for every A ∈ R, we have A∩N 6= ∅
whenever A ∈ R and N ∈ ν(x). As both R and ν(x) are filters,
B is a centered system. Let S be the raster generated by B, i.e.,
S = {B ⊆ X : ∃C ∈ B, C ⊆ B}. We have ν(x) ⊆ S, hence S ν→ x.
But we also have R ⊆ S, and this completes the proof. �

Corollary 3.7. Let (X, ν) be a neighborhood space and x ∈ X a
point. If there exists R ∈ RX such that R ν→ x, then x is a cluster
point of R.
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Corollary 3.8. Let (X, ν) be a pretopological space, x ∈ X a point
and R ∈ RX an ultrafilter. Then R ν→ x if and only if x is a
cluster point of R.

Theorem 3.9. Let (X, ν) and (Y, µ) be neighborhood spaces,
f : (X, ν) → (Y, µ) a continuous map, x ∈ X and R ∈ RX . If
R ν→ x, then f(R) ν→ f(x).

Proof. Let R ν→ x and let N ∈ µ(f(x)). Then f−1(N) ∈ ν(x) ⊆ R.
Hence, f(f−1(N)) ∈ f(R). As N ⊇ f(f−1(N)), we have N ∈ f(R).
Therefore, µ(f(x)) ⊆ f(R), which yields f(R) ν→ f(x). �

Let (X, ν) be the product of a system (Xi, νi), i ∈ I , of neigh-
borhood spaces and let R ∈ RX . By the previous theorem, given
x = (xi : i ∈ I) ∈ X , R ν→ x implies pri(R) ν→ xi for each i ∈ I .
If the converse implication is also valid, we say that the raster R
is convergence-compatible with the product (X, ν). For example, it
is well known that, in topological spaces, filters are convergence-
compatible with products.

Proposition 3.10. Let (X, ν) be the product of a system (Xi, νi),
i ∈ I, of neighborhood spaces and, for every i ∈ I, let Ri ∈ RXi,
xi ∈ Xi and Ri

ν→ xi. If
∏

i∈I Ri ∈ RX is convergence-compatible
with (X, ν), then

∏
i∈I Ri → (xi : i ∈ I).

Proof. The statement follows from the obvious fact that
pri(

∏
i∈I Ri) = Ri. �

The result below is analogous to Theorem 5.3(2) of [7], although
our use of rasters requires an additional hypothesis for the converse.

Theorem 3.11. Let (X, ν) be a neighborhood space and R ∈ RX .
If (X, ν) is separated, then from R ν→ x and R ν→ y it follows that
x = y. The converse is true if (X, ν) is a pretopological space.

Theorem 3.12. Let (X, ν) be a neighborhood space. If every R ∈
RX has a cluster point, then (X, ν) is compact. The converse is
true if (X, ν) is supratopological.

Proof. Suppose that (X, ν) is not compact. Then there exists a cen-
tered system T of closed subsets of X such that

⋂
T = ∅. Hence,

〈T 〉 ∈ RX and
⋂
{clν(A) : A ∈ 〈T 〉} =

⋂
〈T 〉 = ∅. Thus, 〈T 〉 has

no cluster point.
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Conversely, let (X, ν) be supratopological and compact. Let R ∈
RX and put S = {clν(A); A ∈ R}. The idempotence of the closure
operator insures that the elements of S are closed. Now since S is
a centered family of closed subsets of X , we have

⋂
S 6= ∅. Clearly,

every point x ∈
⋂

S is a cluster point of R. �
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