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Abstract. Alexandroff topologies play an enigmatic role in topol-
ogy. An important family of Alexandroff topologies are the func-
tional Alexandroff spaces introduced by Shirazi and Golestani, and
called primal topologies by O. Echi. The primal topology P(f) on
X determined by a function f : X → X is the topology whose
closed sets are the f -invariant subsets of X.

If (X,P(f)) is a primal space, we investigate the collection F =
{g : X → X : P(g) = P(f)} of functions on X which determine
the primal topology. We give a necessary and sufficient condition
for F to be finite, and when it is finite, we give an enumeration of
F .

1. Introduction

Principal spaces (or Alexandroff spaces) are topological spaces in which
any intersection of open sets is open. These spaces were first introduced by
Alexandroff in 1937 and play an important role in several areas including
digital topology and computer sciences (see [2, 6, 9, 10, 12, 11, 14, 15, 16]).
The survey paper [13] discusses the lattice of topologies on a finite set and
the connection to quasi-orders. In [18], interesting results about principal
spaces were investigated from a different perspective by viewing them as
closed sets of the Cantor cube 2X .

We will study a particular class of principal spaces, introduced as func-
tional Alexandroff spaces by Ayatollah Zadeh Shirazi and Golestani [3],
and independently introduced later by Echi [4], who called them primal
spaces. For any morphism f : X → X in the category Set of sets, Echi
associated a principal topology P(f) whose closed sets are those subsets
A which are f -invariant, (i.e, f(A) ⊆ A). A topological space (X, τ) is
called a primal space if there is some mapping f : X → X such that
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τ = P(f).
The following result from [4] allows us to recognize primal spaces by their
associated quasi-orders.

Theorem 1.1. [4, Theorem 2.3] Let X be a principal topological space.
Then, X is a primal space if and only if the associated quasi-ordered set
(X,≤) is a causal quasi-forest in which each non-minimal point x has
singleton interval [x, x].

Let X be a topological space. Define an equivalence relation on X by
x ∼ y if and only if {x} = {y}.

The resulting quotient space X/∼ is a T0-space T0(X) called the T0-
reflection of X. It is clearly seen that X is a principal space if and
only if T0(X) is too. In [4], Echi proved that if X is a primal space,
then T0(X) is also. Another proof of this result, based on the notion of
quasihomeomorphism, is given by Lazaar and Haouati in [5].

In this paper, we consider a primal space (X, τ), with the goal of enu-
merating the maps f : X → X for which τ = P(f). Some particular
spaces are studied and discussed.

2. Enumerating maps giving the same primal space

Given a primal space (X, τ), a natural question is to determine all maps
f on X such that τ = P(f). In particular, we may wish to enumerate the
set {f : X → X : τ = P(f)}.

Before that, let us state some preliminary results. The set of natural
numbers will be represented by N, and N ∪ {0} will be denoted by N0.
For a map f : X → X, a point x ∈ X is a periodic point of f if fn(x) = x
for some n ∈ N; the smallest such n is the period of that point. A point
with period 1 is a fixed point of f . Recall that a flow in a category C is a
couple (X, f), where X is an object of C and f : X → X is a morphism,
called the iterator (see [7] and [8]).

The following proposition is found in Theorem 2.1 and Section 2 of [3]
and as Proposition 1.2(7) of [4].

Proposition 2.1 ([3, 4]). Let (X, f) be a flow in Set and x ∈ X. We
equip X with the topology P(f). Then f : (X,P(f)) → (X,P(f)) is a
closed continuous map.

Proposition 2.2. [4, Proposition 2.2] Let X be a principal space and
x ∈ X. Then {x} \ [x, x] is a closed set.

The next result appears as [3, Lemma 2.6] and [4, Proposition 2.5(2)].

Proposition 2.3 ([3, 4]). Let (X, f) be a flow. Then (X,P(f)) is a
T0-space if and only if each periodic point of (X, f) is fixed.
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Remark 2.4. Let (X, τ) be a primal space, x ∈ X and f, g : X → X two
maps such τ = P(f) = P(g). Then x is an f -periodic point with period n
if and only if x is a g-periodic point with period n. Indeed, suppose that x
is an f -periodic point. Then fn(x) = x for some positive integer n which

implies that {x}
P(f)

= {x, f(x), . . . , fn−1(x)} = {x}
P(g)

= {gk(x) : k ∈
N0}. Hence there exists m ≤ n − 1 such that gn(x) = gm(x), so we

get {gm(x), gm+1(x), . . . , gn−1(x)} = {gm(x)}
P(g)

= {gn(x)}
P(f)

. Thus

|{gm(x), gm+1(x), . . . , gn−1(x)}| = |{gn(x)}
P(f)
| which implies that n −

m = n. Therefore m = 0 and so gn(x) = g0(x) = x which means that x
is a g-periodic point with period n.

Let (X, τ) be a primal space and x ∈ X. Then, by Remark 2.4, x is
said to be a periodic point (resp., a fixed point) if x is a periodic point
(resp., fixed point) of any function f satisfying τ = P(f).

Proposition 2.5. Let (X, τ) be a primal space, x ∈ X and f, g : X → X
two maps such that τ = P(f) = P(g). Then the following properties hold:

(1) f({x}) = g({x}).
(2) f−1({x}) = g−1({x}).

Proof. (1) If x is a periodic point, then {x} = {f(x)} = {g(x)}. It follows
from Proposition 2.1 that f({x}) = g({x}).

If x is not a periodic point, by Proposition 2.2 we have {x} \ {x} is a
closed set. But, we already know that f(x) ∈ {x} \ {x} ⊆ {f(x)} and so
{x}\{x} = {f(x)}. Likewise {x}\{x} = {g(x)}. Thus, {f(x)} = {g(x)}.
Therefore, f({x}) = g({x}).

(2) If y ∈ f−1({x}), then f(y) ∈ {x}. On the other hand, we have
{y} = {fn(y) : n ∈ N0} = {gn(y) : n ∈ N0} so g(y) = fn(y) for some
n ∈ N0.

If n = 0, then we get g(y) = y = f(y) ∈ {x}.
If n ≥ 1, then we get g(y) = fn(y) ∈ fn−1({x}) ⊆ {x}.
Therefore, f−1({x}) ⊆ g−1({x}).
A dual argument gives the converse containment. �

Notation 2.6. Let (X, τ) be a primal space, A ⊆ X, x ∈ X and n ∈ N.
(1) F = {f : X → X : τ = P(f)}.
(2) Ap denotes the set of all periodic points in A.
(3) Ap=n denotes the set of all periodic points in A of period p = n.
(4) Ap≥n denotes the set of all periodic points in A of period p ≥ n.
(5) V(x) denotes the smallest open set containing x.
(6) X−1p≥n denotes the inverse image of Xp≥n by any map f ∈ F .
(7) X = X−1p≥2 \Xp=2.
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Remark 2.7. To see that the notation of 2.6(6) is well-defined, let (X, τ)
be a primal space and f, g : X → X two maps such that τ = P(f) =
P(g). We can easily see that f(Xp≥n) ⊆ Xp≥n, so Xp≥n is a closed set of
X. Thus

f−1(Xp≥n) = f−1(
⋃

x∈Xp≥n

{x}) =
⋃

x∈Xp≥n

f−1({x})

=
⋃

x∈Xp≥n

g−1({x})

= g−1(Xp≥n).

Proposition 2.8. Let (X, τ) be a primal space, x ∈ X, and f, g : X → X
two maps such that τ = P(f) = P(g). Then f(x) 6= g(x) implies that
x ∈ X .
Proof. We will prove the contrapositve: x 6∈ X implies f(x) = g(x). If
x /∈ X , then two cases arise.

Case 1: x ∈ Xp=2. Then {x} = {x, f(x)} = {x, g(x)}. Since x ∈ Xp=2

then g(x) 6= x and thus f(x) = g(x).
Case 2: x ∈ (X−1p≥2)c. We already know that {x} = {fn(x) : n ∈

N0} = {gn(x) : n ∈ N0}. If g(x) = x or f(x) = x then we get f(x) = x =

g(x). Otherwise, we have f(x) ∈ {g(x)}
P(g)

and g(x) ∈ {f(x)}
P(f)

=

{f(x)}
P(g)

. Then f(x) = gn(g(x)) for some n ≥ 0 and g(x) = gm(f(x))
for some m ≥ 0. Hence, f(x) = gn+m(f(x)). Since x ∈ (X−1p≥2)c then
n+m < 2. Thus, n = 0 or m = 0 and so f(x) = g(x). �

Now, we are in a position to give one of the main results of this section.

Theorem 2.9. Let (X, τ) be a topological space. Then the following state-
ments are equivalent.

(1) X is a primal T0-space.
(2) The following properties hold:

(i) There exists a unique map f : X → X such that τ = P(f).
(ii) If x and y are distinct points in X and {x, y} is open, then
{x} or {y} is open.

Proof. (1) =⇒ (2).
(i) The existence of such a map follows immediately from the definition

of a primal space.
Now, for the uniqueness, let f, g : X → X be two maps such that

τ = P(f) = P(g). If f 6= g, then there exists x ∈ X such that f(x) 6= g(x).
Hence, by Proposition 2.8, we get x ∈ X . But since (X, τ) is a T0-space,
then by Proposition 2.3 we have X = ∅ and this gives a contradiction.
Thus, f = g.
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(ii) Let x and y be two distinct points of X such that {x, y} is open.
Suppose that neither {x} nor {y} is open. Then we have V(x) = V(y) =
{x, y}. Hence, x ∈ V(y), so y = fn(x) for some nonzero integer n, and
likewise y ∈ V(x) implies x = fm(y) for some nonzero integer m. Thus,
we get x = fm(y) = fm(fn(x)) = fn+m(x), so x is a periodic point of
period n + m. By Proposition 2.3, n + m = 1 which implies that n = 0
or m = 0, giving the contradiction that x = y.

(2) =⇒ (1). Since there exists a map f : X → X such that τ = P(f)
then X is a primal space. Thus, it remains to prove that X is a T0-space.

Let a ∈ X be a periodic point of period p ≥ 1. Then {a} = {a1, a2, . . . , ap}
where a1 = a, f(ap) = a1 and ai+1 = f(ai) for each 1 ≤ i ≤ p− 1.
• If p ≥ 3, take the map g : X → X defined by:

g(x) = f(x) if x 6= ai for each 1 ≤ i ≤ p.
g(ai) = ai−1 for each 2 ≤ i ≤ p.
g(a1) = ap.

Since p ≥ 3 then we can suppose without loss of generality that a1 6=
a2 6= ap.

Now, we will prove that P(f) = P(g). Since P(f) and P(g) are prin-

cipal topologies, it is sufficient to show that {x}
P(f)

= {x}
P(g)

for all
x ∈ X, that is {fn(x) : n ∈ N0} = {gn(x) : n ∈ N0} for all x in X. Let
x ∈ X.

If fn(x) 6= ai for each 1 ≤ i ≤ p and each n ∈ N0 then fn(x) = gn(x)
for each n ∈ N0, hence {fn(x) : n ∈ N0} = {gn(x) : n ∈ N0}.

If fk(x) = ai for some positive integers k and i with 1 ≤ i ≤ p. Without
loss of generality, we will take k to be the smallest such positive integer,
so that fn(x) /∈ {a1, a2, . . . , ap} for each n < k. Then

{x}
P(f)

= {x, f(x), . . . , fk−1(x), fk(x), fk+1(x), . . . , fk+p−1(x), . . .}

= {x, f(x), . . . , fk−1(x), ai, ai+1, . . . , ap−1, ap, a1, . . .}

= {x, f(x), . . . , fk−1(x), a1, a2, . . . , ap},

and

{x}
P(g)

= {x, g(x), . . . , gk−1(x), gk(x), gk+1(x), . . . , gk+p(x), . . .}

= {x, f(x), . . . , fk−1(x), ai, g(ai), . . . , g
p−1(ai), . . .}

= {x, f(x), . . . , fk−1(x), a1, a2, . . . , ap}.

Thus {x}
P(f)

= {x}
P(g)

and consequently P(f) = P(g). However, we
have g(a1) = ap 6= a2 = f(a1). Thus f 6= g which leads to a contradiction.
Thus, p 6≥ 3.
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• If p = 2, then necessarily we have f−1({a}) \ {a} 6= ∅. Indeed,
f−1({a}) \ {a} = ∅ means that f−1({a}) = {a} which implies that {a} =
{a, f(a)} is an open subset of X. Then, by hypothesis, we get {a} or
{f(a)} is open. If {a} is open, we have f(f(a)) = a so f(a) ∈ Vf (a) = {a}.
Hence, f(a) = a which is a contradiction (p = 2). If {f(a)} is open, we
know that a ∈ Vf (f(a)) = {f(a)}. Hence, f(a) = a which is also a
contradiction (p = 2).

Let y ∈ f−1({a}) \ {a} and take the map g : X → X defined by:
g(x) = f(x) if x 6= y.
g(y) = f2(y).

Let x ∈ X.
If fn(x) 6= y for each n ∈ N0 then fn(x) = gn(x) for each n ∈ N0.

Therefore, {fn(x) : n ∈ N0} = {gn(x) : n ∈ N0}.
If fk(x) = y for some positive integer k, take k to be the smallest such

positive integer. Then

{x}
P(f)

= {x, f(x), . . . , fk(x), fk+1(x), . . . , fk+p−1(x), . . .}
= {x, f(x), . . . , y, f(y), f2(y)},

and

{x}
P(g)

= {x, g(x), . . . , gk(x), gk+1(x), . . . , gk+p(x), . . .}

= {x, f(x), . . . , fk(x), gk+1(x), . . . , gk+p(x), . . .}
= {x, f(x), . . . , y, g(y), . . . , gp(y), . . .}
= {x, f(x), . . . , y, f2(y), f(y)}.

Thus {x}
P(f)

= {x}
P(g)

and consequently P(f) = P(g). However f 6= g
since g(y) = f2(y) 6= f(y), which is a contradiction, so p 6= 2.

Therefore p = 1 and thusX is a primal T0-space by Proposition 2.3. �

The necessity of the T0 condition in Theorem 2.9 is shown in the next
example.

Example 2.10. Let X = {a1, a2, . . . , an} be a finite set with n > 2,
and let τ = {∅, X} be the indiscrete topology on X. It is clear that
(X, τ) is a primal space. Furthermore, we can find two maps f and g
from X to X such that τ = P(f) = P(g). For example, let f be defined
by f(ai) = ai+1, for i ∈ {1, 2, . . . , n − 1} and f(an) = a1, and g by
g(ai+1) = ai, for i ∈ {1, 2, . . . , n− 1} and g(a1) = an. Since |X| > 2 then
f 6= g.

The following example shows that the property (i) in Theorem 2.9 is
essential.
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Example 2.11. Let X = N0 and let τ be the topology on X generated by
{{3n}, {3n, 3n+1, 3n+2} : n ∈ N0}. Then (X, τ) satisfies the property (ii)
in Theorem 2.9. Indeed, let x and y be two distinct points in X such that
{x, y} is open. Then there exist n,m ∈ N0 such that {x, y} = {3n, 3m}
which implies that {x} and {y} are open. Clearly, {3n+ 1} = {3n+ 2} =
{3n+ 1, 3n+ 2} for each n ∈ N0 and consequently (X, τ) is not T0.
However (X, τ) is a primal space generated by the map

f : N0 → N0

n 7→

{
f(n) = n− 1 if n ≡ 2 (mod 3)

f(n) = n+ 1 otherwise.

Now, we give an example showing that the property (ii) in Theorem 2.9
is essential.

Example 2.12. Let X = N0 and let τ be the topology on X generated
by {{2n, 2n + 1} : n ∈ N0}. Then (X, τ) satisfies the property (i) in
Theorem 2.9. Indeed, take the map

f : N0 → N0

n 7→

{
f(n) = n+ 1 if n is even.
f(n) = n− 1 if n is odd.

Then, one can easily see that f is the unique map satisfying τ = P(f).
However, (X, τ) is a primal space which is not T0 since {2n} = {2n+ 1} =
{2n, 2n+ 1} for each n ∈ N0.

Theorem 2.13. Let (X, τ) be a primal space. Then we have
|F| <∞ if and only if |X | <∞.

Proof. Let (X, τ) be a primal space and f : X → X a map such that
τ = P(f).

First, we remark that

X = (X−1p≥2 \Xp≥2) ∪Xp≥3.

Suppose that X is infinite. Then either X−1p≥2 \Xp≥2 is infinite or Xp≥3
is infinite.

Case 1. Xp≥3 is infinite. Let {xi : i ∈ I}  Xp≥3 be a complete set of
equivalence class representatives (with respect to the equivalence relation
∼ defined by: x ∼ y if and only if {x} = {y}) so that {[xi] = [xi, xi] :
i ∈ I} is a partition of Xp≥3. Since Xp≥3 is infinite then {xi : i ∈ I} is
infinite, too.

Let i ∈ I and set [xi] = {a1, a2, . . . , ap}, where a1 = xi and p =
|[xi]|. Then we let the restriction of f on [xi] be defined by: f(xi) =
a2, . . . , f(ap−1) = ap and f(ap) = xi.
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Now, for each i ∈ I we define the map fi : X → X as following:
fi(x) = f(x) if x 6= ak for each 1 ≤ k ≤ p.
fi(ak) = ak−1 for each 2 ≤ k ≤ p.
fi(a1) = ap.

We have already seen, in the proof of Theorem 2.9, that P(fi) = P(f).
Furthermore, for each i 6= j ∈ I we have fi(xi) = fi(a1) = ap 6= a2 =
f(a1) = f(xi) = fj(xi) (since |[xi]| ≥ 3). Therefore, fi 6= fj for each
i 6= j ∈ I and consequently F is infinite.

Case 2. X−1p≥2 \Xp≥2 is infinite.
Then, if y ∈ X−1p≥2 \Xp≥2 we have f(y) ∈ Xp≥2.
Set X−1p≥2 \Xp≥2 = {yi : i ∈ I} and let [f(yi), f(yi)] = {a1, a2, . . . , ap},

where a1 = f(yi) and p = |[f(yi), f(yi)]|. Then we let the restriction of
f on [f(yi), f(yi)] be defined by: f(f(yi)) = a2, . . . , f(ap−1) = ap and
f(ap) = f(yi).

Now, for each yi ∈ X−1p≥2 \ Xp≥2 we define the map fi : X → X as
follows:

fi(x) = f(x) if x 6= yi.
fi(yi) = ar with 2 ≤ r ≤ p.

We shall prove that P(fi) = P(f). But, since P(f) and P(fi) are

principal topologies, it is sufficient to show that {x}
P(f)

= {x}
P(fi) for

all x ∈ X, that is {fn(x) : n ∈ N0} = {fni (x) : n ∈ N0}. Let x ∈ X.
If fn(x) 6= yi for each n ∈ N0 then fn(x) = fni (x) for each n ∈ N0.

Hence, {fn(x) : n ∈ N0} = {fni (x) : n ∈ N0}.
If fk(x) = yi for some positive integer k, then fn(x) 6= yi for each

n 6= k. Thus

{x}
P(f)

= {x, f(x), . . . , fk(x), fk+1(x), . . . , fk+p(x), . . .}
= {x, f(x), . . . , yi, f(yi), f

2(yi), . . . , f
p(yi), . . .}

= {x, f(x), . . . , yi, a1, a2, . . . , ap}.

and

{x}
P(fi)

= {x, fi(x), . . . , fki (x), fk+1
i (x), . . . , fk+p

i (x), . . .}

= {x, f(x), . . . , fk(x), fk+1
i (x), . . . , fk+p

i (x), . . .}
= {x, f(x), . . . , yi, fi(yi), . . . , f

p
i (yi), . . .}

= {x, f(x), . . . , yi, ar, ar+1, . . . , ap, a1, . . . , ar−1}
= {x, f(x), . . . , yi, a1, a2, . . . , ap}.

Thus, {x}
P(f)

= {x}
P(fi) and consequently P(f) = P(fi). However,

for each i 6= j ∈ I we have fi(yi) = ar 6= a1 = f(yi) = fj(yi) (since
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|[f(yi), f(yi)]| ≥ 2). Therefore, fi 6= fj for each i 6= j ∈ I and conse-
quently F is infinite.

For the converse, suppose that F = {fi : i ∈ I} and let i, j ∈ I with
i 6= j. Then there exists x ∈ X such that fi(x) 6= fj(x). So, there exists
x ∈ X such that fi|X (x) 6= fj |X (x) and consequently |F| = |{fi : i ∈
I}| = |{fi|X : i ∈ I}|. On the other hand, we have {fi|X : i ∈ I} ⊆ XX .
Since |X | is assumed to be finite, then |{fi|X : i ∈ I}| < ∞ and finally
|F| <∞. �

Notation 2.14. Suppose (X, τ) is a primal space.
(1) If X has periodic points, let Λ = {aj : j ∈ J} ⊆ Xp be a set of

representatives (with respect to the equivalence relation ∼ defined
by: x ∼ y if and only if {x} = {y}) such that {[aj , aj ] : j ∈ J} is
a partition of Xp.

(2) If X has no periodic points, take Λ = Xp = ∅.
(3) For each aj ∈ Λ, let pj be the period of aj .
(4) For each aj ∈ Λ, let qj = |f−1({aj}) \ {aj}|.
(5) For n ∈ N, let Λp≥n = {aj ∈ Λ : pj ≥ n} and Λp=n = {aj ∈ Λ :

pj = n}.

Suppose that |X | < ∞, aj ∈ Λ, and qj is infinite. If pj ≥ 2, then
aj ∈ Xp≥2, so X = X1

p≥2 \ Xp=2 is infinite, a contradiction. Thus, if qj
is infinite, then pj = 1. In this situation, as a notational convenience for
what follows, we interpret pqjj = 1∞ to be 1.

Theorem 2.15. Let (X, τ) be a primal space such that |X | <∞. Then

|F| =

 1 if Λ = ∅∏
j∈J

(pj − 1)!× pqjj otherwise.

Proof. If Λ = ∅ then (X, τ) is a T0-space. Hence, by Theorem 2.9, there
exists a unique map f : X → X such that τ = P(f) which implies that
|F| = 1.

If Λ 6= ∅, Let A := {x ∈ Λp=2 : f−1({x}) \ {x} = ∅}. Then we have

(Λp=1 ∪ A) ∪ (Λp≥2 \ A) = (Λp=1 ∪ A ∪ Λp≥2) ∩ (Λp=1 ∪ A ∪Ac)

= Λ ∩X
= Λ.

Set Λ1 = Λp=1 ∪ A = {aj : j ∈ J1} and Λ2 = Λp≥2 \ A = {aj : j ∈ J2}
with J1, J2 ⊆ J . It is clear that Λ1 ∩ Λ2 = ∅. Furthermore, we can easily
see that |Λ2| = J2 <∞ (since |X | <∞).
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Let f, g ∈ F . We have already seen that f 6= g if and only if there
exists x ∈ X such that f(x) 6= g(x).

Set Λ2 = {a1, a2, . . . , am}. It is clear that X ⊆
m⋃
j=1

V(aj) and V(aj) ∩

V(ai) = ∅ for each ai, aj ∈ Λ with i 6= j.
Then, any map f in F can be defined by its restrictions on V(aj),

denoted by f/V(aj), for any j between 1 and m.
Therefore, it will be sufficient to determine the number of maps f/V(aj)

for any fixed j. For simplicity, we will still use the notation f to designate
f/V(aj).

For this, let j ∈ J2 and x ∈ V(aj). Then three cases have to be
considered.
• If x ∈ [aj , aj ] = {aj}, then f(x) ∈ f({aj}) ⊆ {aj}. Hence, f(x) ∈

{aj} \ {x}. Thus we get pj − 1 possibilities for f(x).
Now, f(f(x)) ∈ [aj , aj ] \ {x, f(x)} and pj − 2 possibilities remain for
f2(x). One may do the same thing for f3(x), . . . , fpj−2(x) and necessarily
f(fpj−1(x)) = x, so we can define (pj − 1)! maps in this case.
• If x ∈ ({aj})−1 \ {aj} with ({aj})−1 = {x ∈ X : {x} \ {x} ⊆ {aj}}

then f(x) ∈ {aj} = [aj , aj ]. We have seen in the proof of Theorem 2.13
that there are pj possibilities for f(x).
• If x ∈ V(aj) \ ({aj})−1, then x /∈ X and consequently we can define

only one map in this case.
Therefore, we can define (pj − 1)!× pqjj maps for a fixed j ∈ J2 and so

we can define
∏

j∈J2

(pj − 1)!× pqjj maps on
m⋃
j=1

V(aj).

Since X ⊆
m⋃
j=1

V(aj), then by Proposition 2.8 the number of restrictions

of a map g in F on
( m⋃
j=1

V(aj)
)c is equal to 1. Hence, we can define∏

j∈J2

(pj − 1)!× pqjj maps on X.

Now, one may easily check that
∏

j∈J1

(pj − 1)! × pqjj = 1. Indeed, let

aj ∈ Λ1. Then two cases arise.
• If aj ∈ Λp=1 then we have (pj − 1)!× pqjj = (1− 1)!× 1qj = 1.
• If aj ∈ A then we have (pj − 1)!× pqjj = (2− 1)!× 20 = 1.
So we get

|F| =
∏
j∈J

(pj − 1)!× pqjj .

�
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Examples 2.16. (1) Let (X, τ) be a topological space where τ is the
discrete topology. Then we have |Λ| = |X|, pj = 1 and qj = 0 for
each j ∈ J . Hence, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (1− 1)!× 10 = 1.

(2) Let (X, τ) be a topological space such that X is a finite set (|X| =
n) and τ is the indiscrete topology. Then we have Xp = X,
|Λ| = 1, p1 = |X| = n and q1 = 0. Thus, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (n− 1)!× n0 = (n− 1)!.

(3) Let (X, τ) be a primal T0−space.
If Λ = ∅, then |F| = 1. If Λ 6= ∅, then pj = 1 for each aj ∈ Λ

(in this case qj may be finite or infinite). So, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (1− 1)!× 1qj = 1.

(4) Let (X, τ) be a topological space such that X = N0 and τ the
topology generated by {{2n, 2n + 1} : n ∈ N0}. Then we have
Xp = X, Λ = {2n : n ∈ N0}, pj = 2 and qj = 0 for each j ∈ J .
Hence, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (2− 1)!× 20 = 1.

(5) Let (X, τ) be a topological space such that X = {a, b, c} and
τ = {∅, {a}, X}. Then we have Xp = {b, c}, |Λ| = 1, p1 = 2 and
q1 = 1. Thus, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (2− 1)!× 21 = 2.

Indeed, the two maps f1 and f2 satisfying P(f1) = P(f2) = τ are:
f1 : X → X defined by f1(a) = b, f1(b) = c and f1(c) = b.
f2 : X → X defined by f2(a) = c, f2(b) = c and f2(c) = b.

(6) Let (X, τ) be a topological space such that X = {a, b, c, d} and
τ = {∅, {a}, {b}, {a, b}, X}. Then we have Xp = {c, d}, |Λ| = 1,
p1 = 2 and q1 = 2. So, we get

|F| =
∏
j∈J

(pj − 1)!× pqjj = (2− 1)!× 22 = 4.

Indeed, the four maps f1, f2, f3 and f4 satisfying P(f1) = P(f2) =
P(f3) = P(f4) = τ are:
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f1 : X → X defined by f1(a) = c, f1(b) = c, f1(c) = d and
f1(d) = c.
f2 : X → X defined by f2(a) = d, f2(b) = d, f2(c) = d and

f2(d) = c.
f3 : X → X defined by f3(a) = c, f3(b) = d, f3(c) = d and

f3(d) = c.
f4 : X → X defined by f4(a) = d, f4(b) = c, f4(c) = d and

f4(d) = c.
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