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Abstract If f : X — X is a function, the associated functional Alexandroff
topology on X is the topology P; whose closed sets are {4 C X : f(A) C
A}. We present a characterization of functional Alexandroff topologies on a
finite set X and show that the collection FA(X) of all functional Alexandroff
topologies on a finite set X, ordered by inclusion, is a complemented lattice.
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In 1937, Alexandroff [1] studied topologies whose closed sets also form a
topology. Such topologies, in which arbitrary intersections of open sets are
open, are now called Alexandroff topologies. Every topology on a finite set is
clearly an Alexandroff topology. Topologies on finite sets such as the com-
puter digits of real numbers like 7 or the “points” (pixels) in the plane have
driven much of the modern usage of Alexandroff topologies in computer sci-
ence. Alexandroff topologies defined by functions were studied in [6], and in
2011 and 2012, Ayatollah Zadeh Shirazi and Golestani [5] and Echi [9], working
independently, explicitly introduced a class of functional Alexandroff topolo-
gieson X. If f: X — X is a function and x € X, taking the closure of x to
be the orbit {f"(x) : n > 0} of = gives a topology Py on X. A topology 7 on
X is functional Alezandroff if it is Py for some f: X — X. Since their recent
introduction, functional Alexandroff topologies have been further investigated
in [4], [10], [8], [11], [15], [16], [17].

The lattice structure of topologies on a set X has been studied for over 50
years. Much attention has been given to showing that every topology in the
lattice T'(X) of topologies on X has at least one complement, and when a cer-
tain type of topology has a certain type of complement. Anne Steiner [23] first
showed that T'(X) is a complemented lattice by showing that certain topolo-
gies have complements which are Alexandroff topologies. It is known that the
collection A(X) of Alexandroff topologies on a set X is a complemented lat-
tice. Other proofs that T'(X) is complemented [12], [22], [26], results on the
number of complements [7], [21], [27], and results on types of complements [2],
[3], [14], [18][20], [24], [25], [28] followed.
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In this paper, we will see that the collection FFA(X) of functional Alexan-
droff topologies on a set X need not be a lattice if X is infinite. If X is
finite, we show that FA(X) is a lattice, but generally is not a sublattice of
A(X) = T(X). As a subposet of A(X), we investigate when a functional
Alexandroff topology has a functional Alexandroff complement, showing that
FA(X) is a complemented lattice if X is finite. A special case of our comple-
mentation results framed in algebraic terminology was given in [13]. We start
with a characterization of the functional Alexandroff topologies.

If X is a set, T'(X) represents the lattice of all topologies on X ordered by
containment. The indiscrete topology 77 = {0, X} and the discrete topology
Tp = P(X) are the smallest and largest elements, respectively, of T'(X). The
supremum of two topologies 7,7’ € T(X) has subbasis 7T U7’ and basis
{UNV:U e T,V eT'} The infimum T AT is TNT’. A complement of
T € T(X) is a topology 7' € T(X) with TVT' = Tp and TAT' = T;.
T(X) is a complemented lattice since every topology on X has a complement.
A topology on X generally has many complements [7], [27].

The collection A(X) of all Alexandroff topologies on X is a sublattice of
T(X) and a complete lattice [23]. It is an easy exercise to show that A(X)
is a complete sublattice of X if and only if A(X) = T(X), which occurs if
and only if X is finite. If 7 is an Alexandroff topology on X and z € X,
then N(z) = ({U : U € T,z € U} is the smallest neighborhood of z. Ev-
ery Alexandroff topology 7 on X defines a quasiorder (that is, a reflexive,
transitive relation) < on X, called the specialization quasiorder, by taking
x <y if and only if x € c¢l{y}, or equivalently, if and only if y € N(z). Con-
versely, every quasiorder on X defines an Alexandroff topology 7 on X through
the same equivalent expressions. The one-to-one correspondence between qua-
siorders and Alexandroff topologies is widely used. See [19] for a survey of
these connections. In a quasiordered set (X, <), the decreasing hull of A C X
isd(Ad) ={r € X :3Ja € A,x<Sa}. A set is decreasing if A = d(A). We write
d(x) for d({z}). Increasing hulls i(A) and increasing sets are defined dually.
In the associated Alexandroff topology, d(z) = cl{z} and i(x) = N(z), the
decreasing sets are the closed sets, and the increasing sets are the open sets.
A quasiordered set will be called a goset.

If f: X — X is a function, the associated functional Alexandroff topology
P on X is the topology whose closed sets are those A C X which satisfy
f(A) C A. Tt is easy to see that in (X, Py), the closure cl{z} is the orbit
O(x) = {f™(z) : n € Z,n > 0} and the smallest neighborhood N(z) is
{y : In € Z,n > 0 with f*(y) = z}. If {a, f(a), f?(a),..., f*(a) = a} has
cardinality n, we call this set a cycle of length n.

1 Characterizing finite functional Alexandroff topologies

Theorem 1 Suppose Py is a functional Alexandroff topology on X. If Py is
a finite topology, then X is finite.

Proof: If there exists a € X with cl{a} = {a, f(a), f?(a),...} being infinite,
then cl{a},cl{f(a)},cl{f*(a)},... give infinitely many distinct closed sets,
contrary to Py being finite. Thus, for a € X, cl{a} is finite, so a eventu-
ally maps into a cycle of finite length. Infinitely many such cycles would imply
infinitely many closed sets of form cl{a}, so there must be only finitely many
cycles. If a point 2 in one of the cycles has infinitely many predecessors (i.e.,
points y € i(x), or points y with f"(y) = x for some n > 0), the smallest neigh-
borhoods N(y) of those predecessors would give infinitely many open sets, a
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contradiction. Thus, each point of a cycle has only finitely many predecessors,
and thus X is finite.

If | X| = n, the largest functional Alexandroff topology on X is P; = P(X)
where ¢ is the identity function on X. It is easy to see that the next largest
functional Alexandroff topology on {1,...,n} is generated by the function
fG)=jfor1<j<n-—1and j=mn,and f(n —1) = f(n), and this gives
|Py| =271 4+2772: Every subset of {1,...,n—1} is an open set excluding n,
and the open sets including n have form {n—1,n}UC where C C {1,...,n—2}.
A complete characterization of all k& between 2 and 2" which are realized as
|P¢| for some f on an n-element set is not known to us, but we present some
partial results. By A C B we mean A C B and A # B.

Proposition 1 If | X| = n and 2 < k < 2n, there exists f : X — X with
|Py| = k.

Proof: Suppose X = {1,2,...,n}. f 2 < k < n+1, define f(i) =i+ 1 for
i=1,...,n—1and f(n) = k— 1. Then Py = {0,{1},{1,2},{1,2,3},...,
{1,2,...,k =2}, X} and |Pf| = k. For 2 < j < n, define g(i) = ¢ + 1 for
i=1,...,n—2, f(n—1) =n—1, and f(n) = j. It is easy to check that
|P;| =n+ j, so the values of k between n + 2 and 2n are realized as |P,|.

If | X| = n, the example of a function f : X — X with |Pf| = 2 provided
in the proof of Proposition 1 was a cycle. It is easy to see that the only way
that |Py| = 2 may occur is if X is finite and f is a cycle.

The next proposition shows that the example of a function f : X — X
with |Pf| = 3 provided in the proof of Proposition 1 is the only way that
|P¢| = 3 may occur.

Proposition 2 If) C A C X and {0, A, X} = Py for some f: X — X, then
X is a finite set, |A| = 1, and f is given by f(a;) = aj41 fori=1,...,n—1
and f(a,) = ag for some labeling {a1,as,...,a,} of the elements of X.

Proof: Suppose ) € A C X and {0, A, X} = Py. If |A] > 2, pick distinct
elements a1,a2 € A. Now N(a1) = i(a1) = A = i(a2) = N(az), so A must
contain a cycle C' containing {aj,as}. For b € X — A, i(b) = N(b) must
equal X. Now a1 € X = i(b), so b = f"(ay) for some n € N and thus
bec{a} = O(a1) = C C A. This contradicts b ¢ A. Thus, |A| = 1.

If X — A is infinite, then either (a) it contains an infinite chain ¢, f(c),
f?(c),... and then cl{c} and cl{f(c)} are distinct proper open sets, or (b)
X — A contains (at least) two finite cycles, which give two nonempty proper
closed sets. Both cases contradict |Py| =3, so |A| =1 and X — A is finite.

Finally, to see f has the form described, suppose A = {a;} and b € X — A.
If cl{b} = O(b) # X — A, then there exists c € X — (AU cl{b}) and X — cl{b}
is an open proper set containing ¢ ¢ A, so X —cl{b} € {0, A, X }.

Both papers introducing functional Alexandroff spaces ([5] as functional
Alezandroff spaces and [9] using the terminology primal spaces) give charac-
terizations for an Alexandroff topology to be functional Alexandroff, and both
papers describe this as their main result. To have a self-contained develop-
ment here, we present alternate proofs of the characterization in [5], slightly
reworded and in less generality to suit our purposes.

Lemma 1 (cf. Theorem 3.5(C2)[5]) Suppose T is an Alexandroff topology
on an arbitrary set X. The following are equivalent.
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(a) There exist distinct a,b,c € X with N(a) = N(b) C N(c). (See Fig-

ure 1(a).)
(b) There exist distinct a,b,c € X with cl{c} C cl{b} = cl{a}.

Furthermore, if T satisfies these conditions, T is not functional Alexandroff.

Proof: First, we will show N(b) C N(c) if and only if cl{b} D cl{c}. Suppose
N() C N(c). Now z € cl{c} <= c€ N(z) < N(c) C N(z) = N(b) C
N(z) < be N(z) < =z € cl{b}. Conversely, suppose cl{b} D cl{c}. Now
x € N(b) < bed{z} < c{b} Ccd{z} = c{c} Ccd{zr} < c¢€
c{z} <= z € N(c).

Next, we will show that if N(b) C N(c), then cl{b} # cl{c}. Indeed, under
the hypotheses, N(b) # N(c) <= c¢ & N(b) < b ¢ cl{c} = c{b} # cl{c}.
Similarly, if cl{b} D cl{c}, then b & cl{c} = ¢ & N(b) = N(b) # N(c). With
the previous paragraph, this shows (a) and (b) are equivalent.

Now N(a) = N(b) implies b € N(a), so f(b) = a for some n € N, and
similarly, f"(a) = b for some m € N. Thus, a = f"(b) = f**™(a), so a and b
are in a cycle. Now N (b) C N(c) implies b € N(c), so ¢ = f¥(b) for some k € N
and thus c is in the cycle with a and b. This implies N(b) = N(c), contrary to
N(b) C N(c).

Lemma 2 (cf. Theorem 3.5(C1)[5]) Suppose T is an Alexandroff topology
on an arbitrary set X. The following are equivalent.

(a) There exist a,b,c € X with N(a) C N(b),N(c), with N(b) and N(c) not
nested (that is, with N(b)  N(c) and N(c) € N(b). (See Figure 1(b).)

(b) There exist a,b,c € X with cl{c},cl{b} C cl{a}, with cl{b} and cl{c} not
nested.

Furthermore, if T satisfies these conditions, T is not functional Alexandroff.

Proof: The equivalence of (a) and (b) follows from the equivalence of N(b) C
N(c) and cl{b} D cl{c} and the corresponding statement for strict inclusions
given in the proof of Lemma 1. Note that the conditions (a) and (b) each imply
that the points a, b, ¢ are distinct.

Suppose T satisfies (a). Now a € N(b) implies b = f™(a) for some n € N,
and similarly a € N(c¢) implies ¢ = f™(a) for some m € N. If n < m, say
m = n+k, then ¢ = f™(a) = f*(f"(a)) = f*(b), so b € N(c), giving the
contradiction that N(b) C N(c¢). A similar contradiction follows if m < n.

(Q

Fig. 1 Minimal neighborhood configurations which imply the space is not functional
Alexandroff, as characterized in (a) Lemma 1 and (b) Lemma 2.

While the previous lemmas hold for arbitrary sets X, in the case of fi-
nite sets X they provide the only ways a topology may fail to be functional
Alexandroff. The characterization of functional Alexandroff spaces in Theo-
rem 3.5 of [5] is stronger than the one below. It contains an extra condition
which does not require the assumption that X be finite.
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Theorem 2 (cf. Theorem 3.5[5]) A topology T on a finite set X is func-
tional Alexandroff if and only if (a) there are no distinct points a,b,c € X
with N(a) = N(b) C N(c) and (b) N(a) C N(b), N(c) implies N(b) and N(c)
are nested.

Again we note that this says the conditions of Lemmas 1 and 2 are the
only things that can prevent a topology on a finite set from being functional
Alexandroff. We also note that the condition (a) could be replaced by the
equivalent (a)" if a # b and N(a) = N(b), then N(a) ¢ N(c) for any c € X.
Proof: Lemmas 1 and 2 show that if 7 is functional Alexandroff, then (a)
and (b) hold. Conversely, suppose (a) and (b) hold. We give an algorithm to
construct a function f for which 7 = Py.

Iterative Step: Let N = {N(z) : # € X and f(x) has not been defined},
ordered by set inclusion. Pick a € X such that N(a) is minimal in N.

If N(a) contains b # a: the the minimality of N(a) implies N(b) = N(a).
Now N(a) = {a,...,a;} where N(a;) = N(a)fori=1,...,k. By (a), N(a) ¢
N(e) for any ¢ € X. Define f(a;) = a;41 fori=1,...,k —1 and f(ar) = a1.
Return to the Iterative Step.

If N(a) = {a}: Suppose N(a) ¢ N(b) for any b € X. Then define f(a) =a
and return to the Iterative Step. If N(a) = {a} C N(b) for some b € X, by
(b), N(a) C N(b), N(c) implies N(b), N(c) are nested, so there exists b* € X
such that N(b) is minimal among the members of A which strictly contain
N(a). Define f(a) = b*.

If there exists b # b* with N(b') = N(b*), then by (a) there is no ¢
with N(b*) C N(c). Let {z : N(z) = N(*)} = {b1,b2,...,br} and define
f(b)) =biy1 fori=1,...,k and f(bg) = b1. Return to the Iterative Step.

If N(b') # N(b*) for any b’ # b* and N(b) ¢ N(c) for any ¢ € X, return
to the Iterative Step.

If N(b') # N(b*) for any b’ # b* and there exists ¢ € X with N(b) C N(c),
by (b) there exists ¢* € X such that N(c*) is minimal among the members of
N which strictly contain N(b). Define f(b*) = ¢*.

If there exists ¢ # ¢* with N(¢) = N(c¢*), then by (a) there is no d
with N(¢*) € N(d). Let {x : N(z) = N(c*)} = {c1,¢2,...,c} and define
flei) =ciy1 fori=1,...,k and f(ck) = ¢1. Return to the Iterative Step.

From this construction, it is clear that f is a well-defined function on X
with Py =T.

2 Lattice properties of functional Alexandroff topologies

The set A(X) of Alexandroff topologies on X is a sublattice of T'(X) and
is a complete lattice, but is not a complete sublattice unless T'(X) = A(X)
(that is, unless X is finite). We will consider the subposet F'A(X) of functional
Alexandroff spaces.

Proposition 3 The indiscrete topology on X is functional Alexandroff if and
only if X is finite.

Proof: If X is finite and f is any cyclic permutation of X, Py = {0, X }. If X is
infinite, suppose Py = {0, X }. Pick a € X. Now cl{a} = {a, f(a), f*(a),...} =
X, 50 X is countable and f"(a) # a for any n € N. Now cl{f(a)} = {f(a), f?(a),
f3(a),...} is a nonempty closed set not containing a, contrary to Py = {0, X }.
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FA(X) need not be a lattice. For example, for X = Z, define f(n) =n+1
and g(n) = n — 1. Now Py is the left ray topology Py = {(—oo,m) : m €
Z} U{0,Z} and Py is the right ray topology. In T'(X), the only topology
coarser than both Py and P, is the indiscrete topology 7Tr, so in T(X) and
A(X), Py AN Py = Tr. By Proposition 3, the indiscrete topology on Z is not
functional Alexandroff, so Py and P, have no lower bounds in F'A(Z).

The main result of this section gives several lattice properties of FA(X).

Theorem 3 (a) FA(X) is a V-semilattice and Py V Py in FA(X) agrees with
P;V P, in T(X).

(b) If X is finite, FA(X) is a lattice.

(¢) FA(X) is a sublattice of A(X) if and only if | X| < 2.

Proof: (a) Suppose Py, P, € FA(X) have associated quasiorders <, <.
Then <y N S, is a quasiorder <, and it is easy to verify that the asso-
ciated Alexandroff topology is Py V P,. It remains to show that the topol-
ogy associated with <y N <, is functional Alexandroff. Define h : X — X
by h(z) = f¥(x) where k € N is the smallest natural number such that
fF(z) € {g9(x),¢*(x),g%(x),...}, or h(x) = z if there is no such k. Clearly
h is a well-defined function. To show P, = P; V P,, it suffices to show
Np(z) = Nj(2) N Ny(z) for any z € X, or equivalently (since z € cl{z} if
and only if z € N(x)), clp{z} = cly{z} Ncly{x} for all z € X. Suppose z is
given. Since h(x) € clg{z} Nclg{x}, it follows that clp{z} C clp{z} Ncly{z}.
Suppose z € clg{z} Nclg{z}. If z = z, then z € clp{z}, so we may assume
2z = fF(z) = g"(x), where k' > 0. If h(z) = f*1(2) = g™ (), iterating
f we get an increasing sequence k; < ky < k3 < --- such that f*i(z) €
{9(2), 6*(@), 6*(2),... .} and 3 (z) & {g(2), ¢*(x), (&), ...} for ki < j < ki1,
Now when k; = k' we have z = f*i(z) = hi(z), so z € clp{z}.

(b) If X is finite, FA(X) has a least element Py = {0, X} where f is any
cyclic permutation of X. By (a) finite (and thus arbitrary) suprema exist in
FA(X), so FA(X) is a (complete) lattice.

(¢) If X = {a}, the unique topology on X is generated by the unique
function f : X — X. If X = {a,b}, define f(a) = b, f(b) = a, and for
x € {a,b}, g(x) = a,h(z) = b, and i(z) = x. Now the four topologies on X are
realized as Py, Py, Py, P;.

If | X| > 3, pick three distinct elements x1, z2, 23 € X and define f(x1) =
xa, f(xa) = x3, g(xs) = x1,9(x1) = z3, and for © € X — {x1, 22}, f(x) =
g(x) = z. Figure 2 shows f, g, and the associated topologies Py, P, consisting
of the increasing sets from the quasiorders shown. In A(X), Py A P, has basis of
minimal neighborhoods {{z1, 22}, {z1, 22, 23} }U{{z} : v € X —{x1,x0,23}}.
By Lemma 1, this topology is not in FA(X). In FA(X), Py A P, has basis
{1, 20,23} } U{{z}: v € X — {x1, 22,23} }.

T ° ° i) ° °
. N e ® Py
xr1 T2 I3
x3 3
f g GEDLEXE

Fig. 2 Topologies whose infima in A(X) and FA(X) differ.
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For the remainder of this section, we present some specific examples of
infima in FA(X).

While Proposition 2 gave an explicit characterization of the three-element
functional Alexandroff topologies, the next result shows that every three-
element topology on a finite set is the infimum of functional Alexandroff
topologies.

Proposition 4 If X is finite, T € T(X) and |T| =3, then T = Py A P, for
some f,g: X — X.

Proof: Suppose T = {0, A, X} where, after relabeling, A = {1,2,...,k} and
X ={1,2,...,n}. Define f,g: X — X by

. krlj=1
. +157=1,....n—1 . .
o ={1112, g =4 ni—k+1
j—1jeX—{Lk+1}.

It is easy to check that Py A Py, =T.

If f: X — X is injective, the components (in the graph theoretic sense)
of the specialization quasiorder tree can be order isomorphic to Z,N, or a
finite cycle. Note that finite chains leading into a cycle are not possible. If
f is bijective, then components order isomorphic to N are not possible since
1 ¢ f(N). If f is bijective and every 2 € X is part of a finite cycle, then
Py = Ppr =P({O(a) :a € X}) ={C C X : Cis acycle of f}. The result
below is more general.

Proposition 5 If f : X — X is bijective, then Py AN Py-1 = P({D : D is a
component of the <y qoset}), and Py \V Ps-1 has basis {{x} : x is not in any
cycle of fYU{C : C is a finite cycle of f}.

Corollary 1 If f : X — X is bijective, Pf A Pp—x = {0, X} if and only if X
has one component (a cycle, or order isomorphic to 7).

Corollary 2 If f~! exists, Py is the complement of Pr-1 in A(X) if and only
if X is order isomorphic to Z. (Observe that in this case, PsAPs-1 ¢ FA(X).)

The examples below suggest useful techniques for achieving a desired infi-
mum of Py, P,.

Ezxample 1 If f : X — X is bijective and has three components in the <y
qoset isomorphic to Z and two which are cycles as suggested by Figure 3,
then there exists g : X — X, as in Figure 3 with Py A P, = {0, X}. Slight
modifications of this example would show that if the < ; qoset has a finite
number of components, then there exists a function g with Py A Py = {0, X'}

Example 2 If f : X — X is bijective and has a countably infinite number
of components isomorphic to Z in the < qoset and a countable or finite
number of components which are cycles, then there exists a g : X — X with
Py NPy, = {0,X}. Figure 4 suggests f and a function g with the desired
properties.
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OO CE?,E

o

f : g

Fig. 3 P; AP, = {0, X}

7

(K
KK

f

Fig. 4 P; APy = {0, X}

3 Complementation in FA(X).

This section is devoted to describing a constructive algorithm to produce a
functional Alexandroff complement to any functional Alexandroff topology on
a finite set X. This will prove the following result.

Theorem 4 If X is finite, the lattice FA(X) of functional Alexandroff topolo-
gies on X is complemented.

Proof: Suppose X is finite and Py is a functional Alexandroff topology on X.
We will construct a function g on X so that P, is a complement of Py. Let
Qo be the qoset diagram for the quasiorder < ; (defined by « < ;v if and only
if z € cl{y}, if and only if x = f™(y) for some n > 0). Loosely speaking, the
points at the top of the qoset for f should be at the bottom of the qoset for g.
Let C},C2,...,Ck be the components of Qy which have no maximal element.
Since X is finite, each C} is a cycle of f. From each C} (i = 1,...,k), pick a
representative ¢; € C§.

Let Mo = {z € X : z is maximal in Qo} U {c;}F_;.

Since My contains all < g-maximal points and a point of each cycle
C? not having a maximal element, it follows that every z € X is in
the orbit of some point of M. In particular, cl;(My) = X.
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Define g to be a cycle through all the points of My, and pick a point mg € M.

Define g(z) = z for each z € Cy = Ule C§ — My. (Thus, every point of a
cycle C} is fixed, except the representative point c;.)

Let Yo = CoU My = {& € X : g(z) has been defined}. Since Yy was taken
from the top of the qoset for f, this should be at the bottom of the qoset for
g. In future iterations, no further points of X will be fixed by ¢. All remaining
points of X will appear above mg in the qoset diagram for g.

If 2 € My —{c;}f_, then Ny(z) = {z}. If z € Cp, then N,(x) = {z}
(since nothing will subsequently map to x in future iterations of the
algorithm). If z = ¢; = C§ N My, then N¢(x) = C§ and Ny(z)NC§ =
{z}. In all cases, N¢(z) N Ny(z) = {z}.

Now we are set to start an inductive argument.
Suppose g(x) has been defined on Y; and m; has been defined. (**)

Let Q;+1 = X — Y (considered as a qoset diagram) be the set of points of X
for which g(z) has not yet been defined.

Let M1 = {z € Q41 : = is maximal in @Q;41}, and

Ciy1 = {z € Q41 : x is in a component of Q;+1 which has no maximal
element}. Thus, C;41 consists of the points of the cycles having no “stem”
leading into them.

For z € Cj 1, define g(x) = m;.

Linearly order the elements a; < as < --- < a; of M;41 in any manner, and
define

glag) = apyr for k=1,...,i—1
g(ai) = m;.

Now let Yj 11 =Y; UM UC 41 = {z € X : g(z) has been defined} and
let mj41 = a; (which is the maximal point of the main branch of the qoset
diagram thus far defined for g). Iterate from (**) until all points of X are
exhausted.

If 2 € Cj41, Ny(z) = {z} (since nothing will map to z in future
iterations of the algorithm). From the definition of Mj;;, as con-
taining the maximal elements in the f-qoset X — Y} at which g has
not been previously defined, it follows that for z = a € M4,
Ny¢(z) C {z} UY]j. Since Ny(zx) € M;41 U (X — Yj41), we have
N¢(z) N Ny(x) = {z}. Thus, Py A Py = P(X).

Finally, from the construction, note that for every z € X — C,
cy(z) = {x,9(x),¢*(x),...} eventually contains the cycle M.
Since cly(My) = X, the only P; V Py-closed set containing x is
X . Ifz € Cf — {e;} = C4 — My, then ¢; € cly(z) = Cf, and
since clg(c;) = My and cly(Mp) = X, again we have that the only
Py Vv Py-closed set containing x is X.

The example below illustrates the algorithm.

Ezample 8 For X = {a,b,...,l}, let f be the function whose qoset diagram
is shown at the top of Figure 5(a). Pick j as the representative element of
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the cycle. Then My = {a,b,e,g,7} and Cy = {k,l}. We pick my = a. The
algorithm produces the partial qoset shown at the bottom of Figure 5(a). For
the next iteration, we have M; = {¢, f} and C; = {h,i}. We linearly order
M; by ¢ < f and thus m; = f. Figure 5(b) show the result of this iteration.
The final iteration is show in Figure 5(c).

1 G 17O ]
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Fig. 5 Iterations of the complementation algorithm.
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