The Lattice of Functional Alexandroff Topologies

Jacob Menix ${ }^{1}$. Tom Richmond ${ }^{1}$

Received: 28 February 2019 / Accepted: 12 March 2020

Abstract

If $f: X \rightarrow X$ is a function, the associated functional Alexandroff topology on X is the topology P_{f} whose closed sets are $\{A \subseteq X: f(A) \subseteq$ $A\}$. We present a characterization of functional Alexandroff topologies on a finite set X and show that the collection $F A(X)$ of all functional Alexandroff topologies on a finite set X, ordered by inclusion, is a complemented lattice.

Keywords Lattice of topologies • Alexandroff topology • Complemented lattice

In 1937, Alexandroff [1] studied topologies whose closed sets also form a topology. Such topologies, in which arbitrary intersections of open sets are open, are now called Alexandroff topologies. Every topology on a finite set is clearly an Alexandroff topology. Topologies on finite sets such as the computer digits of real numbers like π or the "points" (pixels) in the plane have driven much of the modern usage of Alexandroff topologies in computer science. Alexandroff topologies defined by functions were studied in [6], and in 2011 and 2012, Ayatollah Zadeh Shirazi and Golestani [5] and Echi [9], working independently, explicitly introduced a class of functional Alexandroff topologies on X. If $f: X \rightarrow X$ is a function and $x \in X$, taking the closure of x to be the orbit $\left\{f^{n}(x): n \geq 0\right\}$ of x gives a topology P_{f} on X. A topology \mathcal{T} on X is functional Alexandroff if it is P_{f} for some $f: X \rightarrow X$. Since their recent introduction, functional Alexandroff topologies have been further investigated in [4], [10], [8], [11], [15], [16], [17].

The lattice structure of topologies on a set X has been studied for over 50 years. Much attention has been given to showing that every topology in the lattice $T(X)$ of topologies on X has at least one complement, and when a certain type of topology has a certain type of complement. Anne Steiner [23] first showed that $T(X)$ is a complemented lattice by showing that certain topologies have complements which are Alexandroff topologies. It is known that the collection $A(X)$ of Alexandroff topologies on a set X is a complemented lattice. Other proofs that $T(X)$ is complemented [12], [22], [26], results on the number of complements [7], [21], [27], and results on types of complements [2], [3], [14], [18][20], [24], [25], [28] followed.

[^0]In this paper, we will see that the collection $F A(X)$ of functional Alexandroff topologies on a set X need not be a lattice if X is infinite. If X is finite, we show that $F A(X)$ is a lattice, but generally is not a sublattice of $A(X)=T(X)$. As a subposet of $A(X)$, we investigate when a functional Alexandroff topology has a functional Alexandroff complement, showing that $F A(X)$ is a complemented lattice if X is finite. A special case of our complementation results framed in algebraic terminology was given in [13]. We start with a characterization of the functional Alexandroff topologies.

If X is a set, $T(X)$ represents the lattice of all topologies on X ordered by containment. The indiscrete topology $\mathcal{T}_{I}=\{\emptyset, X\}$ and the discrete topology $\mathcal{T}_{D}=\mathcal{P}(X)$ are the smallest and largest elements, respectively, of $T(X)$. The supremum of two topologies $\mathcal{T}, \mathcal{T}^{\prime} \in T(X)$ has subbasis $\mathcal{T} \cup \mathcal{T}^{\prime}$ and basis $\left\{U \cap V: U \in \mathcal{T}, V \in \mathcal{T}^{\prime}\right\}$. The infimum $\mathcal{T} \wedge \mathcal{T}^{\prime}$ is $\mathcal{T} \cap \mathcal{T}^{\prime}$. A complement of $\mathcal{T} \in T(X)$ is a topology $\mathcal{T}^{\prime} \in T(X)$ with $\mathcal{T} \vee \mathcal{T}^{\prime}=\mathcal{T}_{D}$ and $\mathcal{T} \wedge \mathcal{T}^{\prime}=\mathcal{T}_{I}$. $T(X)$ is a complemented lattice since every topology on X has a complement. A topology on X generally has many complements [7], [27].

The collection $A(X)$ of all Alexandroff topologies on X is a sublattice of $T(X)$ and a complete lattice [23]. It is an easy exercise to show that $A(X)$ is a complete sublattice of X if and only if $A(X)=T(X)$, which occurs if and only if X is finite. If \mathcal{T} is an Alexandroff topology on X and $x \in X$, then $N(x)=\bigcap\{U: U \in \mathcal{T}, x \in U\}$ is the smallest neighborhood of x. Every Alexandroff topology \mathcal{T} on X defines a quasiorder (that is, a reflexive, transitive relation) \lesssim on X, called the specialization quasiorder, by taking $x \lesssim y$ if and only if $x \in \operatorname{cl}\{y\}$, or equivalently, if and only if $y \in N(x)$. Conversely, every quasiorder on X defines an Alexandroff topology \mathcal{T} on X through the same equivalent expressions. The one-to-one correspondence between quasiorders and Alexandroff topologies is widely used. See [19] for a survey of these connections. In a quasiordered set (X, \lesssim), the decreasing hull of $A \subseteq X$ is $d(A)=\{x \in X: \exists a \in A, x \lesssim a\}$. A set is decreasing if $A=d(A)$. We write $d(x)$ for $d(\{x\})$. Increasing hulls $i(A)$ and increasing sets are defined dually. In the associated Alexandroff topology, $d(x)=\operatorname{cl}\{x\}$ and $i(x)=N(x)$, the decreasing sets are the closed sets, and the increasing sets are the open sets. A quasiordered set will be called a qoset.

If $f: X \rightarrow X$ is a function, the associated functional Alexandroff topology P_{f} on X is the topology whose closed sets are those $A \subseteq X$ which satisfy $f(A) \subseteq A$. It is easy to see that in $\left(X, P_{f}\right)$, the closure $\operatorname{cl}\{x\}$ is the orbit $\mathcal{O}(x)=\left\{f^{n}(x): n \in \mathbb{Z}, n \geq 0\right\}$ and the smallest neighborhood $N(x)$ is $\left\{y: \exists n \in \mathbb{Z}, n \geq 0\right.$ with $\left.f^{n}(y)=x\right\}$. If $\left\{a, f(a), f^{2}(a), \ldots, f^{n}(a)=a\right\}$ has cardinality n, we call this set a cycle of length n.

1 Characterizing finite functional Alexandroff topologies

Theorem 1 Suppose P_{f} is a functional Alexandroff topology on X. If P_{f} is a finite topology, then X is finite.

Proof: If there exists $a \in X$ with $\operatorname{cl}\{a\}=\left\{a, f(a), f^{2}(a), \ldots\right\}$ being infinite, then $c l\{a\}, c l\{f(a)\}, c l\left\{f^{2}(a)\right\}, \ldots$ give infinitely many distinct closed sets, contrary to P_{f} being finite. Thus, for $a \in X, \operatorname{cl}\{a\}$ is finite, so a eventually maps into a cycle of finite length. Infinitely many such cycles would imply infinitely many closed sets of form $\operatorname{cl}\{a\}$, so there must be only finitely many cycles. If a point x in one of the cycles has infinitely many predecessors (i.e., points $y \in i(x)$, or points y with $f^{n}(y)=x$ for some $n \geq 0$), the smallest neighborhoods $N(y)$ of those predecessors would give infinitely many open sets, a
contradiction. Thus, each point of a cycle has only finitely many predecessors, and thus X is finite.

If $|X|=n$, the largest functional Alexandroff topology on X is $P_{i}=\mathcal{P}(X)$ where i is the identity function on X. It is easy to see that the next largest functional Alexandroff topology on $\{1, \ldots, n\}$ is generated by the function $f(j)=j$ for $1 \leq j<n-1$ and $j=n$, and $f(n-1)=f(n)$, and this gives $\left|P_{f}\right|=2^{n-1}+2^{n-2}$: Every subset of $\{1, \ldots, n-1\}$ is an open set excluding n, and the open sets including n have form $\{n-1, n\} \cup C$ where $C \subseteq\{1, \ldots, n-2\}$. A complete characterization of all k between 2 and 2^{n} which are realized as $\left|P_{f}\right|$ for some f on an n-element set is not known to us, but we present some partial results. By $A \subset B$ we mean $A \subseteq B$ and $A \neq B$.

Proposition 1 If $|X|=n$ and $2 \leq k \leq 2 n$, there exists $f: X \rightarrow X$ with $\left|P_{f}\right|=k$.

Proof: Suppose $X=\{1,2, \ldots, n\}$. If $2 \leq k \leq n+1$, define $f(i)=i+1$ for $i=1, \ldots, n-1$ and $f(n)=k-1$. Then $P_{f}=\{\emptyset,\{1\},\{1,2\},\{1,2,3\}, \ldots$, $\{1,2, \ldots, k-2\}, X\}$ and $\left|P_{f}\right|=k$. For $2 \leq j \leq n$, define $g(i)=i+1$ for $i=1, \ldots, n-2, f(n-1)=n-1$, and $f(n)=j$. It is easy to check that $\left|P_{g}\right|=n+j$, so the values of k between $n+2$ and $2 n$ are realized as $\left|P_{g}\right|$.

If $|X|=n$, the example of a function $f: X \rightarrow X$ with $\left|P_{f}\right|=2$ provided in the proof of Proposition 1 was a cycle. It is easy to see that the only way that $\left|P_{f}\right|=2$ may occur is if X is finite and f is a cycle.

The next proposition shows that the example of a function $f: X \rightarrow X$ with $\left|P_{f}\right|=3$ provided in the proof of Proposition 1 is the only way that $\left|P_{f}\right|=3$ may occur.

Proposition 2 If $\emptyset \subset A \subset X$ and $\{\emptyset, A, X\}=P_{f}$ for some $f: X \rightarrow X$, then X is a finite set, $|A|=1$, and f is given by $f\left(a_{i}\right)=a_{i+1}$ for $i=1, \ldots, n-1$ and $f\left(a_{n}\right)=a_{2}$ for some labeling $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of the elements of X.
Proof: Suppose $\emptyset \subset A \subset X$ and $\{\emptyset, A, X\}=P_{f}$. If $|A| \geq 2$, pick distinct elements $a_{1}, a_{2} \in A$. Now $N\left(a_{1}\right)=i\left(a_{1}\right)=A=i\left(a_{2}\right)=N\left(a_{2}\right)$, so A must contain a cycle C containing $\left\{a_{1}, a_{2}\right\}$. For $b \in X-A, i(b)=N(b)$ must equal X. Now $a_{1} \in X=i(b)$, so $b=f^{n}\left(a_{1}\right)$ for some $n \in \mathbb{N}$ and thus $b \in \operatorname{cl}\left\{a_{1}\right\}=\mathcal{O}\left(a_{1}\right)=C \subseteq A$. This contradicts $b \notin A$. Thus, $|A|=1$.

If $X-A$ is infinite, then either (a) it contains an infinite chain $c, f(c)$, $f^{2}(c), \ldots$ and then $c l\{c\}$ and $c l\{f(c)\}$ are distinct proper open sets, or (b) $X-A$ contains (at least) two finite cycles, which give two nonempty proper closed sets. Both cases contradict $\left|P_{f}\right|=3$, so $|A|=1$ and $X-A$ is finite.

Finally, to see f has the form described, suppose $A=\left\{a_{1}\right\}$ and $b \in X-A$. If $\operatorname{cl}\{b\}=\mathcal{O}(b) \neq X-A$, then there exists $c \in X-(A \cup c l\{b\})$ and $X-c l\{b\}$ is an open proper set containing $c \notin A$, so $X-c l\{b\} \notin\{\emptyset, A, X\}$.

Both papers introducing functional Alexandroff spaces ([5] as functional Alexandroff spaces and [9] using the terminology primal spaces) give characterizations for an Alexandroff topology to be functional Alexandroff, and both papers describe this as their main result. To have a self-contained development here, we present alternate proofs of the characterization in [5], slightly reworded and in less generality to suit our purposes.

Lemma 1 (cf. Theorem 3.5($\left.\mathcal{C}_{2}\right)[5]$) Suppose \mathcal{T} is an Alexandroff topology on an arbitrary set X. The following are equivalent.
(a) There exist distinct $a, b, c \in X$ with $N(a)=N(b) \subset N(c)$. (See Figure 1(a).)
(b) There exist distinct $a, b, c \in X$ with $\operatorname{cl}\{c\} \subset \operatorname{cl}\{b\}=\operatorname{cl}\{a\}$.

Furthermore, if \mathcal{T} satisfies these conditions, \mathcal{T} is not functional Alexandroff.
Proof: First, we will show $N(b) \subseteq N(c)$ if and only if $c l\{b\} \supseteq c l\{c\}$. Suppose $N(b) \subseteq N(c)$. Now $x \in c l\{c\} \Longleftrightarrow c \in N(x) \Longleftrightarrow N(c) \subseteq N(x) \Rightarrow N(b) \subseteq$ $N(x) \Longleftrightarrow b \in N(x) \Longleftrightarrow x \in \operatorname{cl}\{b\}$. Conversely, suppose $c l\{b\} \supseteq \operatorname{cl}\{c\}$. Now $x \in N(b) \Longleftrightarrow b \in \operatorname{cl}\{x\} \Longleftrightarrow \operatorname{cl}\{b\} \subseteq \operatorname{cl}\{x\} \Rightarrow \operatorname{cl}\{c\} \subseteq c l\{x\} \Longleftrightarrow c \in$ $c l\{x\} \Longleftrightarrow x \in N(c)$.

Next, we will show that if $N(b) \subset N(c)$, then $c l\{b\} \neq c l\{c\}$. Indeed, under the hypotheses, $N(b) \neq N(c) \Longleftrightarrow c \notin N(b) \Longleftrightarrow b \notin \operatorname{cl}\{c\} \Rightarrow \operatorname{cl}\{b\} \neq c l\{c\}$. Similarly, if $c l\{b\} \supset c l\{c\}$, then $b \notin c l\{c\} \Rightarrow c \notin N(b) \Rightarrow N(b) \neq N(c)$. With the previous paragraph, this shows (a) and (b) are equivalent.

Now $N(a)=N(b)$ implies $b \in N(a)$, so $f^{n}(b)=a$ for some $n \in \mathbb{N}$, and similarly, $f^{m}(a)=b$ for some $m \in \mathbb{N}$. Thus, $a=f^{n}(b)=f^{n+m}(a)$, so a and b are in a cycle. Now $N(b) \subset N(c)$ implies $b \in N(c)$, so $c=f^{k}(b)$ for some $k \in \mathbb{N}$ and thus c is in the cycle with a and b. This implies $N(b)=N(c)$, contrary to $N(b) \subset N(c)$.

Lemma 2 (cf. Theorem 3.5($\left.\mathcal{C}_{1}\right)[5]$) Suppose \mathcal{T} is an Alexandroff topology on an arbitrary set X. The following are equivalent.
(a) There exist $a, b, c \in X$ with $N(a) \subset N(b), N(c)$, with $N(b)$ and $N(c)$ not nested (that is, with $N(b) \nsubseteq N(c)$ and $N(c) \nsubseteq N(b)$. (See Figure 1(b).)
(b) There exist $a, b, c \in X$ with $\operatorname{cl}\{c\}, \operatorname{cl}\{b\} \subset \operatorname{cl}\{a\}$, with $\operatorname{cl}\{b\}$ and $\operatorname{cl}\{c\}$ not nested.

Furthermore, if \mathcal{T} satisfies these conditions, \mathcal{T} is not functional Alexandroff.
Proof: The equivalence of (a) and (b) follows from the equivalence of $N(b) \subseteq$ $N(c)$ and $c l\{b\} \supseteq \operatorname{cl}\{c\}$ and the corresponding statement for strict inclusions given in the proof of Lemma 1. Note that the conditions (a) and (b) each imply that the points a, b, c are distinct.

Suppose \mathcal{T} satisfies (a). Now $a \in N(b)$ implies $b=f^{n}(a)$ for some $n \in \mathbb{N}$, and similarly $a \in N(c)$ implies $c=f^{m}(a)$ for some $m \in \mathbb{N}$. If $n \leq m$, say $m=n+k$, then $c=f^{m}(a)=f^{k}\left(f^{n}(a)\right)=f^{k}(b)$, so $b \in N(c)$, giving the contradiction that $N(b) \subseteq N(c)$. A similar contradiction follows if $m<n$.

Fig. 1 Minimal neighborhood configurations which imply the space is not functional Alexandroff, as characterized in (a) Lemma 1 and (b) Lemma 2.

While the previous lemmas hold for arbitrary sets X, in the case of finite sets X they provide the only ways a topology may fail to be functional Alexandroff. The characterization of functional Alexandroff spaces in Theorem 3.5 of [5] is stronger than the one below. It contains an extra condition which does not require the assumption that X be finite.

Theorem 2 (cf. Theorem 3.5[5]) A topology \mathcal{T} on a finite set X is functional Alexandroff if and only if (a) there are no distinct points a,,$c \in X$ with $N(a)=N(b) \subset N(c)$ and (b) $N(a) \subset N(b), N(c)$ implies $N(b)$ and $N(c)$ are nested.

Again we note that this says the conditions of Lemmas 1 and 2 are the only things that can prevent a topology on a finite set from being functional Alexandroff. We also note that the condition (a) could be replaced by the equivalent (a) ${ }^{\prime}$ if $a \neq b$ and $N(a)=N(b)$, then $N(a) \not \subset N(c)$ for any $c \in X$. Proof: Lemmas 1 and 2 show that if \mathcal{T} is functional Alexandroff, then (a) and (b) hold. Conversely, suppose (a) and (b) hold. We give an algorithm to construct a function f for which $\mathcal{T}=P_{f}$.

Iterative Step: Let $\mathcal{N}=\{N(x): x \in X$ and $f(x)$ has not been defined $\}$, ordered by set inclusion. Pick $a \in X$ such that $N(a)$ is minimal in \mathcal{N}.

If $N(a)$ contains $b \neq a$: the the minimality of $N(a)$ implies $N(b)=N(a)$. Now $N(a)=\left\{a_{1}, \ldots, a_{k}\right\}$ where $N\left(a_{i}\right)=N(a)$ for $i=1, \ldots, k$. By (a), N(a) $\not \subset$ $N(c)$ for any $c \in X$. Define $f\left(a_{i}\right)=a_{i+1}$ for $i=1, \ldots, k-1$ and $f\left(a_{k}\right)=a_{1}$. Return to the Iterative Step.

If $N(a)=\{a\}$: Suppose $N(a) \not \subset N(b)$ for any $b \in X$. Then define $f(a)=a$ and return to the Iterative Step. If $N(a)=\{a\} \subset N(b)$ for some $b \in X$, by (b), $N(a) \subset N(b), N(c)$ implies $N(b), N(c)$ are nested, so there exists $b^{*} \in X$ such that $N(b)$ is minimal among the members of \mathcal{N} which strictly contain $N(a)$. Define $f(a)=b^{*}$.

If there exists $b^{\prime} \neq b^{*}$ with $N\left(b^{\prime}\right)=N\left(b^{*}\right)$, then by (a) there is no c with $N\left(b^{*}\right) \subset N(c)$. Let $\left\{x: N(x)=N\left(b^{*}\right)\right\}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and define $f\left(b_{i}\right)=b_{i+1}$ for $i=1, \ldots, k$ and $f\left(b_{k}\right)=b_{1}$. Return to the Iterative Step.

If $N\left(b^{\prime}\right) \neq N\left(b^{*}\right)$ for any $b^{\prime} \neq b^{*}$ and $N(b) \not \subset N(c)$ for any $c \in X$, return to the Iterative Step.

If $N\left(b^{\prime}\right) \neq N\left(b^{*}\right)$ for any $b^{\prime} \neq b^{*}$ and there exists $c \in X$ with $N(b) \subset N(c)$, by (b) there exists $c^{*} \in X$ such that $N\left(c^{*}\right)$ is minimal among the members of \mathcal{N} which strictly contain $N(b)$. Define $f\left(b^{*}\right)=c^{*}$.

If there exists $c^{\prime} \neq c^{*}$ with $N\left(c^{\prime}\right)=N\left(c^{*}\right)$, then by (a) there is no d with $N\left(c^{*}\right) \subset N(d)$. Let $\left\{x: N(x)=N\left(c^{*}\right)\right\}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ and define $f\left(c_{i}\right)=c_{i+1}$ for $i=1, \ldots, k$ and $f\left(c_{k}\right)=c_{1}$. Return to the Iterative Step.

From this construction, it is clear that f is a well-defined function on X with $P_{f}=\mathcal{T}$.

2 Lattice properties of functional Alexandroff topologies

The set $A(X)$ of Alexandroff topologies on X is a sublattice of $T(X)$ and is a complete lattice, but is not a complete sublattice unless $T(X)=A(X)$ (that is, unless X is finite). We will consider the subposet $F A(X)$ of functional Alexandroff spaces.

Proposition 3 The indiscrete topology on X is functional Alexandroff if and only if X is finite.

Proof: If X is finite and f is any cyclic permutation of $X, P_{f}=\{\emptyset, X\}$. If X is infinite, suppose $P_{f}=\{\emptyset, X\}$. Pick $a \in X$. Now $\operatorname{cl}\{a\}=\left\{a, f(a), f^{2}(a), \ldots\right\}=$ X, so X is countable and $f^{n}(a) \neq a$ for any $n \in \mathbb{N}$. Now $\operatorname{cl}\{f(a)\}=\left\{f(a), f^{2}(a)\right.$, $\left.f^{3}(a), \ldots\right\}$ is a nonempty closed set not containing a, contrary to $P_{f}=\{\emptyset, X\}$.
$F A(X)$ need not be a lattice. For example, for $X=\mathbb{Z}$, define $f(n)=n+1$ and $g(n)=n-1$. Now P_{f} is the left ray topology $P_{f}=\{(-\infty, m): m \in$ $\mathbb{Z}\} \cup\{\emptyset, \mathbb{Z}\}$ and P_{g} is the right ray topology. In $T(X)$, the only topology coarser than both P_{f} and P_{g} is the indiscrete topology \mathcal{T}_{I}, so in $T(X)$ and $A(X), P_{f} \wedge P_{g}=\mathcal{T}_{I}$. By Proposition 3, the indiscrete topology on \mathbb{Z} is not functional Alexandroff, so P_{f} and P_{g} have no lower bounds in $F A(\mathbb{Z})$.

The main result of this section gives several lattice properties of $F A(X)$.
Theorem 3 (a) $F A(X)$ is a \vee-semilattice and $P_{f} \vee P_{g}$ in $F A(X)$ agrees with $P_{f} \vee P_{g}$ in $T(X)$.
(b) If X is finite, $F A(X)$ is a lattice.
(c) $F A(X)$ is a sublattice of $A(X)$ if and only if $|X| \leq 2$.

Proof: (a) Suppose $P_{f}, P_{g} \in F A(X)$ have associated quasiorders $\lesssim_{f}, \lesssim_{g}$. Then $\lesssim_{f} \cap \lesssim_{g}$ is a quasiorder \lesssim, and it is easy to verify that the associated Alexandroff topology is $P_{f} \vee P_{g}$. It remains to show that the topology associated with $\lesssim_{f} \cap \lesssim_{g}$ is functional Alexandroff. Define $h: X \rightarrow X$ by $h(x)=f^{k}(x)$ where $k \in \mathbb{N}$ is the smallest natural number such that $f^{k}(x) \in\left\{g(x), g^{2}(x), g^{3}(x), \ldots\right\}$, or $h(x)=x$ if there is no such k. Clearly h is a well-defined function. To show $P_{h}=P_{f} \vee P_{g}$, it suffices to show $N_{h}(z)=N_{f}(z) \cap N_{g}(z)$ for any $z \in X$, or equivalently (since $x \in \operatorname{cl}\{z\}$ if and only if $z \in N(x)), \operatorname{cl}_{h}\{x\}=c l_{f}\{x\} \cap c l_{g}\{x\}$ for all $x \in X$. Suppose x is given. Since $h(x) \in c l_{f}\{x\} \cap c l_{g}\{x\}$, it follows that $c l_{h}\{x\} \subseteq c l_{f}\{x\} \cap c l_{g}\{x\}$. Suppose $z \in c l_{f}\{x\} \cap c l_{g}\{x\}$. If $z=x$, then $z \in c l_{h}\{x\}$, so we may assume $z=f^{k^{\prime}}(x)=g^{n^{\prime}}(x)$, where $k^{\prime}>0$. If $h(x)=f^{k_{1}}(x)=g^{n_{1}}(x)$, iterating f we get an increasing sequence $k_{1}<k_{2}<k_{3}<\cdots$ such that $f^{k_{i}}(x) \in$ $\left\{g(x), g^{2}(x), g^{3}(x), \ldots\right\}$ and $f^{j}(x) \notin\left\{g(x), g^{2}(x), g^{3}(x), \ldots\right\}$ for $k_{i}<j<k_{i+1}$. Now when $k_{i}=k^{\prime}$ we have $z=f^{k_{i}}(x)=h^{i}(x)$, so $z \in \operatorname{cl}_{h}\{x\}$.
(b) If X is finite, $F A(X)$ has a least element $P_{f}=\{\emptyset, X\}$ where f is any cyclic permutation of X. By (a) finite (and thus arbitrary) suprema exist in $F A(X)$, so $F A(X)$ is a (complete) lattice.
(c) If $X=\{a\}$, the unique topology on X is generated by the unique function $f: X \rightarrow X$. If $X=\{a, b\}$, define $f(a)=b, f(b)=a$, and for $x \in\{a, b\}, g(x)=a, h(x)=b$, and $i(x)=x$. Now the four topologies on X are realized as $P_{f}, P_{g}, P_{h}, P_{i}$.

If $|X| \geq 3$, pick three distinct elements $x_{1}, x_{2}, x_{3} \in X$ and define $f\left(x_{1}\right)=$ $x_{2}, f\left(x_{2}\right)=x_{3}, g\left(x_{2}\right)=x_{1}, g\left(x_{1}\right)=x_{3}$, and for $x \in X-\left\{x_{1}, x_{2}\right\}, f(x)=$ $g(x)=x$. Figure 2 shows f, g, and the associated topologies P_{f}, P_{g} consisting of the increasing sets from the quasiorders shown. In $A(X), P_{f} \wedge P_{g}$ has basis of minimal neighborhoods $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}\right\} \cup\left\{\{x\}: x \in X-\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$. By Lemma 1, this topology is not in $F A(X)$. In $F A(X), P_{f} \wedge P_{g}$ has basis $\left\{\left\{x_{1}, x_{2}, x_{3}\right\}\right\} \cup\left\{\{x\}: x \in X-\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$.

Fig. 2 Topologies whose infima in $A(X)$ and $F A(X)$ differ.

For the remainder of this section, we present some specific examples of infima in $F A(X)$.

While Proposition 2 gave an explicit characterization of the three-element functional Alexandroff topologies, the next result shows that every threeelement topology on a finite set is the infimum of functional Alexandroff topologies.

Proposition 4 If X is finite, $\mathcal{T} \in T(X)$ and $|\mathcal{T}|=3$, then $\mathcal{T}=P_{f} \wedge P_{g}$ for some $f, g: X \rightarrow X$.

Proof: Suppose $\mathcal{T}=\{\emptyset, A, X\}$ where, after relabeling, $A=\{1,2, \ldots, k\}$ and $X=\{1,2, \ldots, n\}$. Define $f, g: X \rightarrow X$ by

$$
f(j)=\left\{\begin{array}{l}
j+1 j=1, \ldots, n-1 \\
k+1 j=n
\end{array} \quad g(j)=\left\{\begin{aligned}
k+1 j=1 \\
n j=k+1 \\
j-1 j \in X-\{1, k+1\}
\end{aligned}\right.\right.
$$

It is easy to check that $P_{f} \wedge P_{g}=\mathcal{T}$.

If $f: X \rightarrow X$ is injective, the components (in the graph theoretic sense) of the specialization quasiorder tree can be order isomorphic to \mathbb{Z}, \mathbb{N}, or a finite cycle. Note that finite chains leading into a cycle are not possible. If f is bijective, then components order isomorphic to \mathbb{N} are not possible since $1 \notin f(\mathbb{N})$. If f is bijective and every $x \in X$ is part of a finite cycle, then $P_{f}=P_{f-1}=\mathcal{P}(\{\mathcal{O}(a): a \in X\})=\{C \subseteq X: C$ is a cycle of $f\}$. The result below is more general.

Proposition 5 If $f: X \rightarrow X$ is bijective, then $P_{f} \wedge P_{f-1}=\mathcal{P}(\{D: D$ is a component of the \leq_{f} qoset $\}$), and $P_{f} \vee P_{f^{-1}}$ has basis $\{\{x\}: x$ is not in any cycle of $f\} \cup\{C: C$ is a finite cycle of $f\}$.

Corollary 1 If $f: X \rightarrow X$ is bijective, $P_{f} \wedge P_{f^{-1}}=\{\emptyset, X\}$ if and only if X has one component (a cycle, or order isomorphic to \mathbb{Z}).

Corollary 2 If f^{-1} exists, P_{f} is the complement of P_{f-1} in $A(X)$ if and only if X is order isomorphic to \mathbb{Z}. (Observe that in this case, $P_{f} \wedge P_{f-1} \notin F A(X)$.)

The examples below suggest useful techniques for achieving a desired infimum of P_{f}, P_{g}.

Example 1 If $f: X \rightarrow X$ is bijective and has three components in the \lesssim_{f} qoset isomorphic to \mathbb{Z} and two which are cycles as suggested by Figure 3, then there exists $g: X \rightarrow X$, as in Figure 3 with $P_{f} \wedge P_{g}=\{\emptyset, X\}$. Slight modifications of this example would show that if the \lesssim_{f} qoset has a finite number of components, then there exists a function g with $P_{f} \wedge P_{g}=\{\emptyset, X\}$.

Example 2 If $f: X \rightarrow X$ is bijective and has a countably infinite number of components isomorphic to \mathbb{Z} in the \lesssim_{f} qoset and a countable or finite number of components which are cycles, then there exists a $g: X \rightarrow X$ with $P_{f} \wedge P_{g}=\{\emptyset, X\}$. Figure 4 suggests f and a function g with the desired properties.

Fig. $3 P_{f} \wedge P_{g}=\{\emptyset, X\}$

Fig. $4 P_{f} \wedge P_{g}=\{\emptyset, X\}$

3 Complementation in $F A(X)$.

This section is devoted to describing a constructive algorithm to produce a functional Alexandroff complement to any functional Alexandroff topology on a finite set X. This will prove the following result.

Theorem 4 If X is finite, the lattice $F A(X)$ of functional Alexandroff topologies on X is complemented.

Proof: Suppose X is finite and P_{f} is a functional Alexandroff topology on X. We will construct a function g on X so that P_{g} is a complement of P_{f}. Let Q_{0} be the qoset diagram for the quasiorder \lesssim_{f} (defined by $x \lesssim_{f} y$ if and only if $x \in \operatorname{cl}\{y\}$, if and only if $x=f^{n}(y)$ for some $\left.n \geq 0\right)$. Loosely speaking, the points at the top of the qoset for f should be at the bottom of the qoset for g. Let $C_{0}^{1}, C_{0}^{2}, \ldots, C_{0}^{k}$ be the components of Q_{0} which have no maximal element. Since X is finite, each C_{0}^{i} is a cycle of f. From each $C_{0}^{i}(i=1, \ldots, k)$, pick a representative $c_{i} \in C_{0}^{i}$.
Let $M_{0}=\left\{x \in X: x\right.$ is maximal in $\left.Q_{0}\right\} \cup\left\{c_{i}\right\}_{i=1}^{k}$.
Since M_{0} contains all \lesssim_{f}-maximal points and a point of each cycle C_{i}^{0} not having a maximal element, it follows that every $x \in X$ is in the orbit of some point of M_{0}. In particular, $c l_{f}\left(M_{0}\right)=X$.

Define g to be a cycle through all the points of M_{0}, and pick a point $m_{0} \in M_{0}$.
Define $g(x)=x$ for each $x \in C_{0} \equiv \bigcup_{i=1}^{k} C_{0}^{i}-M_{0}$. (Thus, every point of a cycle C_{0}^{i} is fixed, except the representative point c_{i}.)
Let $Y_{0}=C_{0} \cup M_{0}=\{x \in X: g(x)$ has been defined $\}$. Since Y_{0} was taken from the top of the qoset for f, this should be at the bottom of the qoset for g. In future iterations, no further points of X will be fixed by g. All remaining points of X will appear above m_{0} in the qoset diagram for g.

If $x \in M_{0}-\left\{c_{i}\right\}_{i=1}^{k}$, then $N_{f}(x)=\{x\}$. If $x \in C_{0}$, then $N_{g}(x)=\{x\}$ (since nothing will subsequently map to x in future iterations of the algorithm). If $x=c_{i}=C_{0}^{i} \cap M_{0}$, then $N_{f}(x)=C_{0}^{i}$ and $N_{g}(x) \cap C_{0}^{i}=$ $\{x\}$. In all cases, $N_{f}(x) \cap N_{g}(x)=\{x\}$.

Now we are set to start an inductive argument.
Suppose $g(x)$ has been defined on Y_{j} and m_{j} has been defined.
Let $Q_{j+1}=X-Y_{j}$ (considered as a qoset diagram) be the set of points of X for which $g(x)$ has not yet been defined.
Let $M_{j+1}=\left\{x \in Q_{j+1}: x\right.$ is maximal in $\left.Q_{j+1}\right\}$, and
$C_{j+1}=\left\{x \in Q_{j+1}: x\right.$ is in a component of Q_{j+1} which has no maximal element $\}$. Thus, C_{j+1} consists of the points of the cycles having no "stem" leading into them.

For $x \in C_{j+1}$, define $g(x)=m_{j}$.
Linearly order the elements $a_{1}<a_{2}<\cdots<a_{i}$ of M_{j+1} in any manner, and define

$$
\begin{aligned}
g\left(a_{k}\right) & =a_{k+1} \text { for } k=1, \ldots, i-1 \\
g\left(a_{i}\right) & =m_{j} .
\end{aligned}
$$

Now let $Y_{j+1}=Y_{j} \cup M_{j+1} \cup C_{j+1}=\{x \in X: g(x)$ has been defined $\}$ and let $m_{j+1}=a_{1}$ (which is the maximal point of the main branch of the qoset diagram thus far defined for g). Iterate from $\left({ }^{(*)}\right.$) until all points of X are exhausted.

If $x \in C_{j+1}, N_{g}(x)=\{x\}$ (since nothing will map to x in future iterations of the algorithm). From the definition of M_{j+1} as containing the maximal elements in the f-qoset $X-Y_{j}$ at which g has not been previously defined, it follows that for $x=a_{k} \in M_{j+1}$, $N_{f}(x) \subseteq\{x\} \cup Y_{j}$. Since $N_{g}(x) \subseteq M_{j+1} \cup\left(X-Y_{j+1}\right)$, we have $N_{f}(x) \cap N_{g}(x)=\{x\}$. Thus, $P_{f} \wedge P_{g}=\mathcal{P}(X)$.

Finally, from the construction, note that for every $x \in X-C_{0}$, $c l_{g}(x)=\left\{x, g(x), g^{2}(x), \ldots\right\}$ eventually contains the cycle M_{0}. Since $c l_{f}\left(M_{0}\right)=X$, the only $P_{f} \vee P_{g}$-closed set containing x is X. If $x \in C_{0}^{i}-\left\{c_{i}\right\}=C_{0}^{i}-M_{0}$, then $c_{i} \in c l_{f}(x)=C_{0}^{i}$, and since $c l_{g}\left(c_{i}\right)=M_{0}$ and $c l_{f}\left(M_{0}\right)=X$, again we have that the only $P_{f} \vee P_{g}$-closed set containing x is X.

The example below illustrates the algorithm.
Example 3 For $X=\{a, b, \ldots, l\}$, let f be the function whose qoset diagram is shown at the top of Figure 5(a). Pick j as the representative element of
the cycle. Then $M_{0}=\{a, b, e, g, j\}$ and $C_{0}=\{k, l\}$. We pick $m_{0}=a$. The algorithm produces the partial qoset shown at the bottom of Figure 5(a). For the next iteration, we have $M_{1}=\{c, f\}$ and $C_{1}=\{h, i\}$. We linearly order M_{1} by $c<f$ and thus $m_{1}=f$. Figure $5(\mathrm{~b})$ show the result of this iteration. The final iteration is show in Figure 5(c).

Fig. 5 Iterations of the complementation algorithm.

References

1. Alexandroff, P.: Diskrete Räume. Mat. Sb. 2(44), 501-519 (1937)
2. Anderson, B. A.: A class of topologies with T_{1}-complements. Fund. Math. 69, 267-277 (1970)
3. Anderson, B. A., Stewart, D. G.: T_{1}-complements of T_{1} topologies. Proc. Amer. Math. Soc. 23(1), 77-81 (1969)
4. Ayatollah Zadeh Shirazi, F., Golestani, N.: More about functional Alexandroff topological spaces. Scientia Magna 6(4), 64-69 (2010)
5. Ayatollah Zadeh Shirazi, F., Golestani, N.: Functional Alexandroff spaces. Hacettepe Journal of Mathematics and Statistics 40(4), 515-522 (2011)
6. Belaid, K., Cherif, B., Echi, O.: Quasi-spectral binary relational and ordered disjoint unions. J. Math Sci. (Calcutta) 11(2) 139-157 (2000)
7. Brown, J. I., Watson, S.: The number of complements of a topology on n points is at least 2^{n} (except for some special cases). Discrete Math. 154, 27-39 (1996)
8. Dahane, I., Lazaar, S., Richmond, T., Turki, T.: On resolvable primal spaces, Quaestiones Mathematicae 42(1) 15-35 (2019)
9. Echi, O.: The category of flows of set and top. Topology and its Applications 159(9), 2357-2366 (2012)
10. Echi, O., Turki, T.: Spectral primal spaces, J. Alg. and its Apps. 18(2) 1950030 (2019)
11. Haouati, A., Lazaar, S.: Primal spaces and quasihomeomorphisms. Appl. Gen. Topol. 16(2), 109-118 (2015)
12. Hartmanis, J.: On the lattice of topologies, Canad. J. Math. 10 547-553 (1958)
13. D. Jakubíková-Studenovská, L. Janičková, Construction of a complementary quasiorder, Algebra and Discrete Mathematics 25(1), 39-55 (2018)
14. Lamper, M.: Complements in the lattice of all topologies of topological groups. Arch Math. (Brno) 10(4), 221-230 (1974) (1975)
15. Lazaar, S., Richmond, T., Sabri, H.: Homogeneous functionally Alexandroff spaces. Bulletin of the Australian Mathematical Society, 97(2), 331-339 (2018)
16. Lazaar, S., Richmond, T., Sabri, H.: The Autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Communications in Algebra, 47(9) 38183289 (2019)
17. Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaestiones Mathematicae 40(1), 17-28 (2017)
18. Mhemdi, A., Richmond, T.: Complements of convex topologies on products of finite totally ordered spaces. Positivity 21(4), 1369-1382 (2017)
19. Richmond, T.: Quasiorders, principal topologies, and partially ordered partitions. Internat. J. Math. \& Math. Sci. 21(2), 221-234 (1998)
20. Richmond, T.: Complements in the lattice of locally convex topologies. Order $\mathbf{3 0}(\mathbf{2})$ 487-496 (2013)
21. Schnare, P. S.: Multiple complementation in the lattice of topologies, Fund. Math. 62 53-59 (1968)
22. Schnare, P.S.: The topological complementation theorem a la Zorn. Proc. Amer. Math. Soc. 35(1) 285-286 (1972)
23. Steiner, A. K.: The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122, 379-398 (1966)
24. Steiner, A. K.: Complementation in the lattice of T_{1}-topologies. Proc. Amer. Math. Soc 17, 884-886 (1966)
25. Steiner, A. K., Steiner, E. F.: Topologies with T_{1}-complements. Fund. Math. 61, 23-28 (1967)
26. Van Rooij, A. C. M.: The lattice of all topologies is complemented. Canad. J. Math 20, 805-807 (1968)
27. Watson, S.: The number of complements in the lattice of topologies on a fixed set Topology Appl. 55(2), 101-125 (1994)
28. Uzcátegui, C.: Maximal complements in the lattice of pre-orders and topologies. Topology Appl. 132(2) , 147-157 (2003)

[^0]: J. Menix jacob.menix@gmail.com
 \boxtimes T. Richmond tom.richmond@wku.edu
 1 Department of Mathematics, Western Kentucky University, Bowling Green KY 42101

