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Abstract If f : X → X is a function, the associated functional Alexandroff
topology on X is the topology Pf whose closed sets are {A ⊆ X : f(A) ⊆
A}. We present a characterization of functional Alexandroff topologies on a
finite set X and show that the collection FA(X) of all functional Alexandroff
topologies on a finite set X, ordered by inclusion, is a complemented lattice.

Keywords Lattice of topologies · Alexandroff topology · Complemented
lattice

In 1937, Alexandroff [1] studied topologies whose closed sets also form a
topology. Such topologies, in which arbitrary intersections of open sets are
open, are now called Alexandroff topologies. Every topology on a finite set is
clearly an Alexandroff topology. Topologies on finite sets such as the com-
puter digits of real numbers like π or the “points” (pixels) in the plane have
driven much of the modern usage of Alexandroff topologies in computer sci-
ence. Alexandroff topologies defined by functions were studied in [6], and in
2011 and 2012, Ayatollah Zadeh Shirazi and Golestani [5] and Echi [9], working
independently, explicitly introduced a class of functional Alexandroff topolo-
gies on X. If f : X → X is a function and x ∈ X, taking the closure of x to
be the orbit {fn(x) : n ≥ 0} of x gives a topology Pf on X. A topology T on
X is functional Alexandroff if it is Pf for some f : X → X. Since their recent
introduction, functional Alexandroff topologies have been further investigated
in [4], [10], [8], [11], [15], [16], [17].

The lattice structure of topologies on a set X has been studied for over 50
years. Much attention has been given to showing that every topology in the
lattice T (X) of topologies on X has at least one complement, and when a cer-
tain type of topology has a certain type of complement. Anne Steiner [23] first
showed that T (X) is a complemented lattice by showing that certain topolo-
gies have complements which are Alexandroff topologies. It is known that the
collection A(X) of Alexandroff topologies on a set X is a complemented lat-
tice. Other proofs that T (X) is complemented [12], [22], [26], results on the
number of complements [7], [21], [27], and results on types of complements [2],
[3], [14], [18][20], [24], [25], [28] followed.
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In this paper, we will see that the collection FA(X) of functional Alexan-
droff topologies on a set X need not be a lattice if X is infinite. If X is
finite, we show that FA(X) is a lattice, but generally is not a sublattice of
A(X) = T (X). As a subposet of A(X), we investigate when a functional
Alexandroff topology has a functional Alexandroff complement, showing that
FA(X) is a complemented lattice if X is finite. A special case of our comple-
mentation results framed in algebraic terminology was given in [13]. We start
with a characterization of the functional Alexandroff topologies.

If X is a set, T (X) represents the lattice of all topologies on X ordered by
containment. The indiscrete topology TI = {∅, X} and the discrete topology
TD = P(X) are the smallest and largest elements, respectively, of T (X). The
supremum of two topologies T , T ′ ∈ T (X) has subbasis T ∪ T ′ and basis
{U ∩ V : U ∈ T , V ∈ T ′}. The infimum T ∧ T ′ is T ∩ T ′. A complement of
T ∈ T (X) is a topology T ′ ∈ T (X) with T ∨ T ′ = TD and T ∧ T ′ = TI .
T (X) is a complemented lattice since every topology on X has a complement.
A topology on X generally has many complements [7], [27].

The collection A(X) of all Alexandroff topologies on X is a sublattice of
T (X) and a complete lattice [23]. It is an easy exercise to show that A(X)
is a complete sublattice of X if and only if A(X) = T (X), which occurs if
and only if X is finite. If T is an Alexandroff topology on X and x ∈ X,
then N(x) =

⋂
{U : U ∈ T , x ∈ U} is the smallest neighborhood of x. Ev-

ery Alexandroff topology T on X defines a quasiorder (that is, a reflexive,
transitive relation) ∼< on X, called the specialization quasiorder, by taking
x ∼<y if and only if x ∈ cl{y}, or equivalently, if and only if y ∈ N(x). Con-
versely, every quasiorder onX defines an Alexandroff topology T onX through
the same equivalent expressions. The one-to-one correspondence between qua-
siorders and Alexandroff topologies is widely used. See [19] for a survey of
these connections. In a quasiordered set (X, ∼< ), the decreasing hull of A ⊆ X
is d(A) = {x ∈ X : ∃a ∈ A, x ∼<a}. A set is decreasing if A = d(A). We write
d(x) for d({x}). Increasing hulls i(A) and increasing sets are defined dually.
In the associated Alexandroff topology, d(x) = cl{x} and i(x) = N(x), the
decreasing sets are the closed sets, and the increasing sets are the open sets.
A quasiordered set will be called a qoset.

If f : X → X is a function, the associated functional Alexandroff topology
Pf on X is the topology whose closed sets are those A ⊆ X which satisfy
f(A) ⊆ A. It is easy to see that in (X,Pf ), the closure cl{x} is the orbit
O(x) = {fn(x) : n ∈ Z, n ≥ 0} and the smallest neighborhood N(x) is
{y : ∃n ∈ Z, n ≥ 0 with fn(y) = x}. If {a, f(a), f2(a), . . . , fn(a) = a} has
cardinality n, we call this set a cycle of length n.

1 Characterizing finite functional Alexandroff topologies

Theorem 1 Suppose Pf is a functional Alexandroff topology on X. If Pf is
a finite topology, then X is finite.

Proof: If there exists a ∈ X with cl{a} = {a, f(a), f2(a), . . .} being infinite,
then cl{a}, cl{f(a)}, cl{f2(a)}, . . . give infinitely many distinct closed sets,
contrary to Pf being finite. Thus, for a ∈ X, cl{a} is finite, so a eventu-
ally maps into a cycle of finite length. Infinitely many such cycles would imply
infinitely many closed sets of form cl{a}, so there must be only finitely many
cycles. If a point x in one of the cycles has infinitely many predecessors (i.e.,
points y ∈ i(x), or points y with fn(y) = x for some n ≥ 0), the smallest neigh-
borhoods N(y) of those predecessors would give infinitely many open sets, a
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contradiction. Thus, each point of a cycle has only finitely many predecessors,
and thus X is finite.

If |X| = n, the largest functional Alexandroff topology on X is Pi = P(X)
where i is the identity function on X. It is easy to see that the next largest
functional Alexandroff topology on {1, . . . , n} is generated by the function
f(j) = j for 1 ≤ j < n − 1 and j = n, and f(n − 1) = f(n), and this gives
|Pf | = 2n−1 + 2n−2: Every subset of {1, . . . , n− 1} is an open set excluding n,
and the open sets including n have form {n−1, n}∪C where C ⊆ {1, . . . , n−2}.
A complete characterization of all k between 2 and 2n which are realized as
|Pf | for some f on an n-element set is not known to us, but we present some
partial results. By A ⊂ B we mean A ⊆ B and A 6= B.

Proposition 1 If |X| = n and 2 ≤ k ≤ 2n, there exists f : X → X with
|Pf | = k.

Proof: Suppose X = {1, 2, . . . , n}. If 2 ≤ k ≤ n + 1, define f(i) = i + 1 for
i = 1, . . . , n − 1 and f(n) = k − 1. Then Pf = {∅, {1}, {1, 2}, {1, 2, 3}, . . .,
{1, 2, . . . , k − 2}, X} and |Pf | = k. For 2 ≤ j ≤ n, define g(i) = i + 1 for
i = 1, . . . , n − 2, f(n − 1) = n − 1, and f(n) = j. It is easy to check that
|Pg| = n+ j, so the values of k between n+ 2 and 2n are realized as |Pg|.

If |X| = n, the example of a function f : X → X with |Pf | = 2 provided
in the proof of Proposition 1 was a cycle. It is easy to see that the only way
that |Pf | = 2 may occur is if X is finite and f is a cycle.

The next proposition shows that the example of a function f : X → X
with |Pf | = 3 provided in the proof of Proposition 1 is the only way that
|Pf | = 3 may occur.

Proposition 2 If ∅ ⊂ A ⊂ X and {∅, A,X} = Pf for some f : X → X, then
X is a finite set, |A| = 1, and f is given by f(ai) = ai+1 for i = 1, . . . , n− 1
and f(an) = a2 for some labeling {a1, a2, . . . , an} of the elements of X.

Proof: Suppose ∅ ⊂ A ⊂ X and {∅, A,X} = Pf . If |A| ≥ 2, pick distinct
elements a1, a2 ∈ A. Now N(a1) = i(a1) = A = i(a2) = N(a2), so A must
contain a cycle C containing {a1, a2}. For b ∈ X − A, i(b) = N(b) must
equal X. Now a1 ∈ X = i(b), so b = fn(a1) for some n ∈ N and thus
b ∈ cl{a1} = O(a1) = C ⊆ A. This contradicts b 6∈ A. Thus, |A| = 1.

If X − A is infinite, then either (a) it contains an infinite chain c, f(c),
f2(c), . . . and then cl{c} and cl{f(c)} are distinct proper open sets, or (b)
X − A contains (at least) two finite cycles, which give two nonempty proper
closed sets. Both cases contradict |Pf | = 3, so |A| = 1 and X −A is finite.

Finally, to see f has the form described, suppose A = {a1} and b ∈ X−A.
If cl{b} = O(b) 6= X −A, then there exists c ∈ X − (A∪ cl{b}) and X − cl{b}
is an open proper set containing c 6∈ A, so X − cl{b} 6∈ {∅, A,X}.

Both papers introducing functional Alexandroff spaces ([5] as functional
Alexandroff spaces and [9] using the terminology primal spaces) give charac-
terizations for an Alexandroff topology to be functional Alexandroff, and both
papers describe this as their main result. To have a self-contained develop-
ment here, we present alternate proofs of the characterization in [5], slightly
reworded and in less generality to suit our purposes.

Lemma 1 (cf. Theorem 3.5(C2)[5]) Suppose T is an Alexandroff topology
on an arbitrary set X. The following are equivalent.
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(a) There exist distinct a, b, c ∈ X with N(a) = N(b) ⊂ N(c). (See Fig-
ure 1(a).)

(b) There exist distinct a, b, c ∈ X with cl{c} ⊂ cl{b} = cl{a}.

Furthermore, if T satisfies these conditions, T is not functional Alexandroff.

Proof: First, we will show N(b) ⊆ N(c) if and only if cl{b} ⊇ cl{c}. Suppose
N(b) ⊆ N(c). Now x ∈ cl{c} ⇐⇒ c ∈ N(x) ⇐⇒ N(c) ⊆ N(x) ⇒ N(b) ⊆
N(x) ⇐⇒ b ∈ N(x) ⇐⇒ x ∈ cl{b}. Conversely, suppose cl{b} ⊇ cl{c}. Now
x ∈ N(b) ⇐⇒ b ∈ cl{x} ⇐⇒ cl{b} ⊆ cl{x} ⇒ cl{c} ⊆ cl{x} ⇐⇒ c ∈
cl{x} ⇐⇒ x ∈ N(c).

Next, we will show that if N(b) ⊂ N(c), then cl{b} 6= cl{c}. Indeed, under
the hypotheses, N(b) 6= N(c) ⇐⇒ c 6∈ N(b) ⇐⇒ b 6∈ cl{c} ⇒ cl{b} 6= cl{c}.
Similarly, if cl{b} ⊃ cl{c}, then b 6∈ cl{c} ⇒ c 6∈ N(b) ⇒ N(b) 6= N(c). With
the previous paragraph, this shows (a) and (b) are equivalent.

Now N(a) = N(b) implies b ∈ N(a), so fn(b) = a for some n ∈ N, and
similarly, fm(a) = b for some m ∈ N. Thus, a = fn(b) = fn+m(a), so a and b
are in a cycle. Now N(b) ⊂ N(c) implies b ∈ N(c), so c = fk(b) for some k ∈ N
and thus c is in the cycle with a and b. This implies N(b) = N(c), contrary to
N(b) ⊂ N(c).

Lemma 2 (cf. Theorem 3.5(C1)[5]) Suppose T is an Alexandroff topology
on an arbitrary set X. The following are equivalent.

(a) There exist a, b, c ∈ X with N(a) ⊂ N(b), N(c), with N(b) and N(c) not
nested (that is, with N(b) 6⊆ N(c) and N(c) 6⊆ N(b). (See Figure 1(b).)

(b) There exist a, b, c ∈ X with cl{c}, cl{b} ⊂ cl{a}, with cl{b} and cl{c} not
nested.

Furthermore, if T satisfies these conditions, T is not functional Alexandroff.

Proof: The equivalence of (a) and (b) follows from the equivalence of N(b) ⊆
N(c) and cl{b} ⊇ cl{c} and the corresponding statement for strict inclusions
given in the proof of Lemma 1. Note that the conditions (a) and (b) each imply
that the points a, b, c are distinct.

Suppose T satisfies (a). Now a ∈ N(b) implies b = fn(a) for some n ∈ N,
and similarly a ∈ N(c) implies c = fm(a) for some m ∈ N. If n ≤ m, say
m = n + k, then c = fm(a) = fk(fn(a)) = fk(b), so b ∈ N(c), giving the
contradiction that N(b) ⊆ N(c). A similar contradiction follows if m < n.
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Fig. 1 Minimal neighborhood configurations which imply the space is not functional
Alexandroff, as characterized in (a) Lemma 1 and (b) Lemma 2.

While the previous lemmas hold for arbitrary sets X, in the case of fi-
nite sets X they provide the only ways a topology may fail to be functional
Alexandroff. The characterization of functional Alexandroff spaces in Theo-
rem 3.5 of [5] is stronger than the one below. It contains an extra condition
which does not require the assumption that X be finite.
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Theorem 2 (cf. Theorem 3.5[5]) A topology T on a finite set X is func-
tional Alexandroff if and only if (a) there are no distinct points a, b, c ∈ X
with N(a) = N(b) ⊂ N(c) and (b) N(a) ⊂ N(b), N(c) implies N(b) and N(c)
are nested.

Again we note that this says the conditions of Lemmas 1 and 2 are the
only things that can prevent a topology on a finite set from being functional
Alexandroff. We also note that the condition (a) could be replaced by the
equivalent (a)′ if a 6= b and N(a) = N(b), then N(a) 6⊂ N(c) for any c ∈ X.
Proof: Lemmas 1 and 2 show that if T is functional Alexandroff, then (a)
and (b) hold. Conversely, suppose (a) and (b) hold. We give an algorithm to
construct a function f for which T = Pf .

Iterative Step: Let N = {N(x) : x ∈ X and f(x) has not been defined},
ordered by set inclusion. Pick a ∈ X such that N(a) is minimal in N .

If N(a) contains b 6= a: the the minimality of N(a) implies N(b) = N(a).
Now N(a) = {a1, . . . , ak} where N(ai) = N(a) for i = 1, . . . , k. By (a), N(a) 6⊂
N(c) for any c ∈ X. Define f(ai) = ai+1 for i = 1, . . . , k − 1 and f(ak) = a1.
Return to the Iterative Step.

If N(a) = {a}: Suppose N(a) 6⊂ N(b) for any b ∈ X. Then define f(a) = a
and return to the Iterative Step. If N(a) = {a} ⊂ N(b) for some b ∈ X, by
(b), N(a) ⊂ N(b), N(c) implies N(b), N(c) are nested, so there exists b∗ ∈ X
such that N(b) is minimal among the members of N which strictly contain
N(a). Define f(a) = b∗.

If there exists b′ 6= b∗ with N(b′) = N(b∗), then by (a) there is no c
with N(b∗) ⊂ N(c). Let {x : N(x) = N(b∗)} = {b1, b2, . . . , bk} and define
f(bi) = bi+1 for i = 1, . . . , k and f(bk) = b1. Return to the Iterative Step.

If N(b′) 6= N(b∗) for any b′ 6= b∗ and N(b) 6⊂ N(c) for any c ∈ X, return
to the Iterative Step.

If N(b′) 6= N(b∗) for any b′ 6= b∗ and there exists c ∈ X with N(b) ⊂ N(c),
by (b) there exists c∗ ∈ X such that N(c∗) is minimal among the members of
N which strictly contain N(b). Define f(b∗) = c∗.

If there exists c′ 6= c∗ with N(c′) = N(c∗), then by (a) there is no d
with N(c∗) ⊂ N(d). Let {x : N(x) = N(c∗)} = {c1, c2, . . . , ck} and define
f(ci) = ci+1 for i = 1, . . . , k and f(ck) = c1. Return to the Iterative Step.

From this construction, it is clear that f is a well-defined function on X
with Pf = T .

2 Lattice properties of functional Alexandroff topologies

The set A(X) of Alexandroff topologies on X is a sublattice of T (X) and
is a complete lattice, but is not a complete sublattice unless T (X) = A(X)
(that is, unless X is finite). We will consider the subposet FA(X) of functional
Alexandroff spaces.

Proposition 3 The indiscrete topology on X is functional Alexandroff if and
only if X is finite.

Proof: If X is finite and f is any cyclic permutation of X, Pf = {∅, X}. If X is
infinite, suppose Pf = {∅, X}. Pick a ∈ X. Now cl{a} = {a, f(a), f2(a), . . .} =
X, soX is countable and fn(a) 6= a for any n ∈ N. Now cl{f(a)} = {f(a), f2(a),
f3(a), . . .} is a nonempty closed set not containing a, contrary to Pf = {∅, X}.
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FA(X) need not be a lattice. For example, for X = Z, define f(n) = n+ 1
and g(n) = n − 1. Now Pf is the left ray topology Pf = {(−∞,m) : m ∈
Z} ∪ {∅,Z} and Pg is the right ray topology. In T (X), the only topology
coarser than both Pf and Pg is the indiscrete topology TI , so in T (X) and
A(X), Pf ∧ Pg = TI . By Proposition 3, the indiscrete topology on Z is not
functional Alexandroff, so Pf and Pg have no lower bounds in FA(Z).

The main result of this section gives several lattice properties of FA(X).

Theorem 3 (a) FA(X) is a ∨-semilattice and Pf ∨Pg in FA(X) agrees with
Pf ∨ Pg in T (X).

(b) If X is finite, FA(X) is a lattice.
(c) FA(X) is a sublattice of A(X) if and only if |X| ≤ 2.

Proof: (a) Suppose Pf , Pg ∈ FA(X) have associated quasiorders ∼<
f , ∼< g.

Then ∼<
f ∩ ∼<

g is a quasiorder ∼< , and it is easy to verify that the asso-
ciated Alexandroff topology is Pf ∨ Pg. It remains to show that the topol-
ogy associated with ∼<

f ∩ ∼<
g is functional Alexandroff. Define h : X → X

by h(x) = fk(x) where k ∈ N is the smallest natural number such that
fk(x) ∈ {g(x), g2(x), g3(x), . . .}, or h(x) = x if there is no such k. Clearly
h is a well-defined function. To show Ph = Pf ∨ Pg, it suffices to show
Nh(z) = Nf (z) ∩ Ng(z) for any z ∈ X, or equivalently (since x ∈ cl{z} if
and only if z ∈ N(x)), clh{x} = clf{x} ∩ clg{x} for all x ∈ X. Suppose x is
given. Since h(x) ∈ clf{x} ∩ clg{x}, it follows that clh{x} ⊆ clf{x} ∩ clg{x}.
Suppose z ∈ clf{x} ∩ clg{x}. If z = x, then z ∈ clh{x}, so we may assume

z = fk
′
(x) = gn

′
(x), where k′ > 0. If h(x) = fk1(x) = gn1(x), iterating

f we get an increasing sequence k1 < k2 < k3 < · · · such that fki(x) ∈
{g(x), g2(x), g3(x), . . .} and f j(x) 6∈ {g(x), g2(x), g3(x), . . .} for ki < j < ki+1.
Now when ki = k′ we have z = fki(x) = hi(x), so z ∈ clh{x}.

(b) If X is finite, FA(X) has a least element Pf = {∅, X} where f is any
cyclic permutation of X. By (a) finite (and thus arbitrary) suprema exist in
FA(X), so FA(X) is a (complete) lattice.

(c) If X = {a}, the unique topology on X is generated by the unique
function f : X → X. If X = {a, b}, define f(a) = b, f(b) = a, and for
x ∈ {a, b}, g(x) = a, h(x) = b, and i(x) = x. Now the four topologies on X are
realized as Pf , Pg, Ph, Pi.

If |X| ≥ 3, pick three distinct elements x1, x2, x3 ∈ X and define f(x1) =
x2, f(x2) = x3, g(x2) = x1, g(x1) = x3, and for x ∈ X − {x1, x2}, f(x) =
g(x) = x. Figure 2 shows f, g, and the associated topologies Pf , Pg consisting
of the increasing sets from the quasiorders shown. In A(X), Pf∧Pg has basis of
minimal neighborhoods {{x1, x2}, {x1, x2, x3}}∪{{x} : x ∈ X −{x1, x2, x3}}.
By Lemma 1, this topology is not in FA(X). In FA(X), Pf ∧ Pg has basis
{{x1, x2, x3}} ∪ {{x} : x ∈ X − {x1, x2, x3}}.

rrr
x1

x2

x3

r r · · ·

f

rrr
x2

x1

x3

r · · ·r

g

r r r rg�
 �	��
�
� · · ·rg g

x1 x2 x3

Pf

r r r rg�
 �	��
�
� · · ·rg g Pg

Fig. 2 Topologies whose infima in A(X) and FA(X) differ.
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For the remainder of this section, we present some specific examples of
infima in FA(X).

While Proposition 2 gave an explicit characterization of the three-element
functional Alexandroff topologies, the next result shows that every three-
element topology on a finite set is the infimum of functional Alexandroff
topologies.

Proposition 4 If X is finite, T ∈ T (X) and |T | = 3, then T = Pf ∧ Pg for
some f, g : X → X.

Proof: Suppose T = {∅, A,X} where, after relabeling, A = {1, 2, . . . , k} and
X = {1, 2, . . . , n}. Define f, g : X → X by

f(j) =

{
j + 1 j = 1, . . . , n− 1
k + 1 j = n

g(j) =

k + 1 j = 1
n j = k + 1

j − 1 j ∈ X − {1, k + 1}.

It is easy to check that Pf ∧ Pg = T .

If f : X → X is injective, the components (in the graph theoretic sense)
of the specialization quasiorder tree can be order isomorphic to Z,N, or a
finite cycle. Note that finite chains leading into a cycle are not possible. If
f is bijective, then components order isomorphic to N are not possible since
1 6∈ f(N). If f is bijective and every x ∈ X is part of a finite cycle, then
Pf = Pf−1 = P({O(a) : a ∈ X}) = {C ⊆ X : C is a cycle of f}. The result
below is more general.

Proposition 5 If f : X → X is bijective, then Pf ∧ Pf−1 = P({D : D is a
component of the ≤f qoset}), and Pf ∨ Pf−1 has basis {{x} : x is not in any
cycle of f} ∪ {C : C is a finite cycle of f}.

Corollary 1 If f : X → X is bijective, Pf ∧ Pf−1 = {∅, X} if and only if X
has one component (a cycle, or order isomorphic to Z).

Corollary 2 If f−1 exists, Pf is the complement of Pf−1 in A(X) if and only
if X is order isomorphic to Z. (Observe that in this case, Pf∧Pf−1 6∈ FA(X).)

The examples below suggest useful techniques for achieving a desired infi-
mum of Pf , Pg.

Example 1 If f : X → X is bijective and has three components in the ∼<
f

qoset isomorphic to Z and two which are cycles as suggested by Figure 3,
then there exists g : X → X, as in Figure 3 with Pf ∧ Pg = {∅, X}. Slight
modifications of this example would show that if the ∼<

f qoset has a finite
number of components, then there exists a function g with Pf ∧ Pg = {∅, X}.

Example 2 If f : X → X is bijective and has a countably infinite number
of components isomorphic to Z in the ∼<

f qoset and a countable or finite
number of components which are cycles, then there exists a g : X → X with
Pf ∧ Pg = {∅, X}. Figure 4 suggests f and a function g with the desired
properties.
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Fig. 3 Pf ∧ Pg = {∅, X}

Fig. 4 Pf ∧ Pg = {∅, X}

3 Complementation in FA(X).

This section is devoted to describing a constructive algorithm to produce a
functional Alexandroff complement to any functional Alexandroff topology on
a finite set X. This will prove the following result.

Theorem 4 If X is finite, the lattice FA(X) of functional Alexandroff topolo-
gies on X is complemented.

Proof: Suppose X is finite and Pf is a functional Alexandroff topology on X.
We will construct a function g on X so that Pg is a complement of Pf . Let
Q0 be the qoset diagram for the quasiorder ∼<

f (defined by x ∼<
f y if and only

if x ∈ cl{y}, if and only if x = fn(y) for some n ≥ 0). Loosely speaking, the
points at the top of the qoset for f should be at the bottom of the qoset for g.
Let C1

0 , C
2
0 , . . . , C

k
0 be the components of Q0 which have no maximal element.

Since X is finite, each Ci
0 is a cycle of f . From each Ci

0 (i = 1, . . . , k), pick a
representative ci ∈ Ci

0.

Let M0 = {x ∈ X : x is maximal in Q0} ∪ {ci}ki=1.

Since M0 contains all ∼<
f -maximal points and a point of each cycle

C0
i not having a maximal element, it follows that every x ∈ X is in

the orbit of some point of M0. In particular, clf (M0) = X.
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Define g to be a cycle through all the points of M0, and pick a point m0 ∈M0.

Define g(x) = x for each x ∈ C0 ≡
⋃k

i=1 C
i
0 −M0. (Thus, every point of a

cycle Ci
0 is fixed, except the representative point ci.)

Let Y0 = C0 ∪M0 = {x ∈ X : g(x) has been defined}. Since Y0 was taken
from the top of the qoset for f , this should be at the bottom of the qoset for
g. In future iterations, no further points of X will be fixed by g. All remaining
points of X will appear above m0 in the qoset diagram for g.

If x ∈M0−{ci}ki=1, then Nf (x) = {x}. If x ∈ C0, then Ng(x) = {x}
(since nothing will subsequently map to x in future iterations of the
algorithm). If x = ci = Ci

0 ∩M0, then Nf (x) = Ci
0 and Ng(x)∩Ci

0 =
{x}. In all cases, Nf (x) ∩Ng(x) = {x}.

Now we are set to start an inductive argument.

Suppose g(x) has been defined on Yj and mj has been defined. (**)

Let Qj+1 = X − Yj (considered as a qoset diagram) be the set of points of X
for which g(x) has not yet been defined.

Let Mj+1 = {x ∈ Qj+1 : x is maximal in Qj+1}, and

Cj+1 = {x ∈ Qj+1 : x is in a component of Qj+1 which has no maximal
element}. Thus, Cj+1 consists of the points of the cycles having no “stem”
leading into them.

For x ∈ Cj+1, define g(x) = mj .

Linearly order the elements a1 < a2 < · · · < ai of Mj+1 in any manner, and
define

g(ak) = ak+1 for k = 1, . . . , i− 1

g(ai) = mj .

Now let Yj+1 = Yj ∪Mj+1 ∪ Cj+1 = {x ∈ X : g(x) has been defined} and
let mj+1 = a1 (which is the maximal point of the main branch of the qoset
diagram thus far defined for g). Iterate from (**) until all points of X are
exhausted.

If x ∈ Cj+1, Ng(x) = {x} (since nothing will map to x in future
iterations of the algorithm). From the definition of Mj+1 as con-
taining the maximal elements in the f -qoset X − Yj at which g has
not been previously defined, it follows that for x = ak ∈ Mj+1,
Nf (x) ⊆ {x} ∪ Yj . Since Ng(x) ⊆ Mj+1 ∪ (X − Yj+1), we have
Nf (x) ∩Ng(x) = {x}. Thus, Pf ∧ Pg = P(X).

Finally, from the construction, note that for every x ∈ X − C0,
clg(x) = {x, g(x), g2(x), . . .} eventually contains the cycle M0.
Since clf (M0) = X, the only Pf ∨ Pg-closed set containing x is
X. If x ∈ Ci

0 − {ci} = Ci
0 − M0, then ci ∈ clf (x) = Ci

0, and
since clg(ci) = M0 and clf (M0) = X, again we have that the only
Pf ∨ Pg-closed set containing x is X.

The example below illustrates the algorithm.

Example 3 For X = {a, b, . . . , l}, let f be the function whose qoset diagram
is shown at the top of Figure 5(a). Pick j as the representative element of
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the cycle. Then M0 = {a, b, e, g, j} and C0 = {k, l}. We pick m0 = a. The
algorithm produces the partial qoset shown at the bottom of Figure 5(a). For
the next iteration, we have M1 = {c, f} and C1 = {h, i}. We linearly order
M1 by c < f and thus m1 = f . Figure 5(b) show the result of this iteration.
The final iteration is show in Figure 5(c).

(a) (b) (c)

Fig. 5 Iterations of the complementation algorithm.
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