The Lattice of Functional Alexandroff Topologies

Jacob Menix¹ · Tom Richmond¹

Received: 28 February 2019 / Accepted: 12 March 2020

Abstract If $f: X \to X$ is a function, the associated functional Alexandroff topology on X is the topology P_f whose closed sets are $\{A \subseteq X : f(A) \subseteq A\}$. We present a characterization of functional Alexandroff topologies on a finite set X and show that the collection FA(X) of all functional Alexandroff topologies on a finite set X, ordered by inclusion, is a complemented lattice.

Keywords Lattice of topologies \cdot Alexandroff topology \cdot Complemented lattice

In 1937, Alexandroff [1] studied topologies whose closed sets also form a topology. Such topologies, in which arbitrary intersections of open sets are open, are now called Alexandroff topologies. Every topology on a finite set is clearly an Alexandroff topology. Topologies on finite sets such as the computer digits of real numbers like π or the "points" (pixels) in the plane have driven much of the modern usage of Alexandroff topologies in computer science. Alexandroff topologies defined by functions were studied in [6], and in 2011 and 2012, Ayatollah Zadeh Shirazi and Golestani [5] and Echi [9], working independently, explicitly introduced a class of functional Alexandroff topologies of x to be the orbit $\{f^n(x): n \geq 0\}$ of x gives a topology P_f on X. A topology \mathcal{T} on X is functional Alexandroff if it is P_f for some $f: X \to X$. Since their recent introduction, functional Alexandroff topologies have been further investigated in [4], [10], [8], [11], [15], [16], [17].

The lattice structure of topologies on a set X has been studied for over 50 years. Much attention has been given to showing that every topology in the lattice T(X) of topologies on X has at least one complement, and when a certain type of topology has a certain type of complement. Anne Steiner [23] first showed that T(X) is a complemented lattice by showing that certain topologies have complements which are Alexandroff topologies. It is known that the collection A(X) of Alexandroff topologies on a set X is a complemented lattice. Other proofs that T(X) is complemented [12], [22], [26], results on the number of complements [7], [21], [27], and results on types of complements [2], [3], [14], [18][20], [24], [25], [28] followed.

 $\boxtimes {\rm T. \ Richmond} \qquad {\rm tom.richmond} @wku.edu$

J. Menix jacob.menix@gmail.com

 $^{^1}$ Department of Mathematics, Western Kentucky University, Bowling Green KY 42101

In this paper, we will see that the collection FA(X) of functional Alexandroff topologies on a set X need not be a lattice if X is infinite. If X is finite, we show that FA(X) is a lattice, but generally is not a sublattice of A(X) = T(X). As a subposet of A(X), we investigate when a functional Alexandroff topology has a functional Alexandroff complement, showing that FA(X) is a complemented lattice if X is finite. A special case of our complementation results framed in algebraic terminology was given in [13]. We start with a characterization of the functional Alexandroff topologies.

If X is a set, T(X) represents the lattice of all topologies on X ordered by containment. The indiscrete topology $\mathcal{T}_I = \{\emptyset, X\}$ and the discrete topology $\mathcal{T}_D = \mathcal{P}(X)$ are the smallest and largest elements, respectively, of T(X). The supremum of two topologies $\mathcal{T}, \mathcal{T}' \in T(X)$ has subbasis $\mathcal{T} \cup \mathcal{T}'$ and basis $\{U \cap V : U \in \mathcal{T}, V \in \mathcal{T}'\}$. The infimum $\mathcal{T} \wedge \mathcal{T}'$ is $\mathcal{T} \cap \mathcal{T}'$. A complement of $\mathcal{T} \in T(X)$ is a topology $\mathcal{T}' \in T(X)$ with $\mathcal{T} \vee \mathcal{T}' = \mathcal{T}_D$ and $\mathcal{T} \wedge \mathcal{T}' = \mathcal{T}_I$. T(X) is a complemented lattice since every topology on X has a complement. A topology on X generally has many complements [7], [27].

The collection A(X) of all Alexandroff topologies on X is a sublattice of T(X) and a complete lattice [23]. It is an easy exercise to show that A(X)is a complete sublattice of X if and only if A(X) = T(X), which occurs if and only if X is finite. If \mathcal{T} is an Alexandroff topology on X and $x \in X$, then $N(x) = \bigcap \{ U : U \in \mathcal{T}, x \in U \}$ is the smallest neighborhood of x. Every Alexandroff topology \mathcal{T} on X defines a quasiorder (that is, a reflexive, transitive relation) \lesssim on X, called the *specialization quasiorder*, by taking $x \leq y$ if and only if $x \in cl\{y\}$, or equivalently, if and only if $y \in N(x)$. Conversely, every quasiorder on X defines an Alexandroff topology \mathcal{T} on X through the same equivalent expressions. The one-to-one correspondence between quasiorders and Alexandroff topologies is widely used. See [19] for a survey of these connections. In a quasiordered set (X, \leq) , the decreasing hull of $A \subseteq X$ is $d(A) = \{x \in X : \exists a \in A, x \leq a\}$. A set is decreasing if A = d(A). We write d(x) for $d({x})$. Increasing hulls i(A) and increasing sets are defined dually. In the associated Alexandroff topology, $d(x) = cl\{x\}$ and i(x) = N(x), the decreasing sets are the closed sets, and the increasing sets are the open sets. A quasiordered set will be called a *qoset*.

If $f: X \to X$ is a function, the associated functional Alexandroff topology P_f on X is the topology whose closed sets are those $A \subseteq X$ which satisfy $f(A) \subseteq A$. It is easy to see that in (X, P_f) , the closure $cl\{x\}$ is the orbit $\mathcal{O}(x) = \{f^n(x) : n \in \mathbb{Z}, n \geq 0\}$ and the smallest neighborhood N(x) is $\{y : \exists n \in \mathbb{Z}, n \geq 0 \text{ with } f^n(y) = x\}$. If $\{a, f(a), f^2(a), \ldots, f^n(a) = a\}$ has cardinality n, we call this set a *cycle* of length n.

1 Characterizing finite functional Alexandroff topologies

Theorem 1 Suppose P_f is a functional Alexandroff topology on X. If P_f is a finite topology, then X is finite.

Proof: If there exists $a \in X$ with $cl\{a\} = \{a, f(a), f^2(a), \ldots\}$ being infinite, then $cl\{a\}, cl\{f(a)\}, cl\{f^2(a)\}, \ldots$ give infinitely many distinct closed sets, contrary to P_f being finite. Thus, for $a \in X$, $cl\{a\}$ is finite, so a eventually maps into a cycle of finite length. Infinitely many such cycles would imply infinitely many closed sets of form $cl\{a\}$, so there must be only finitely many cycles. If a point x in one of the cycles has infinitely many predecessors (i.e., points $y \in i(x)$, or points y with $f^n(y) = x$ for some $n \ge 0$), the smallest neighborhoods N(y) of those predecessors would give infinitely many open sets, a contradiction. Thus, each point of a cycle has only finitely many predecessors, and thus X is finite.

If |X| = n, the largest functional Alexandroff topology on X is $P_i = \mathcal{P}(X)$ where *i* is the identity function on X. It is easy to see that the next largest functional Alexandroff topology on $\{1, \ldots, n\}$ is generated by the function f(j) = j for $1 \leq j < n-1$ and j = n, and f(n-1) = f(n), and this gives $|P_f| = 2^{n-1} + 2^{n-2}$: Every subset of $\{1, \ldots, n-1\}$ is an open set excluding *n*, and the open sets including *n* have form $\{n-1, n\} \cup C$ where $C \subseteq \{1, \ldots, n-2\}$. A complete characterization of all *k* between 2 and 2^n which are realized as $|P_f|$ for some *f* on an *n*-element set is not known to us, but we present some partial results. By $A \subset B$ we mean $A \subseteq B$ and $A \neq B$.

Proposition 1 If |X| = n and $2 \le k \le 2n$, there exists $f : X \to X$ with $|P_f| = k$.

Proof: Suppose $X = \{1, 2, ..., n\}$. If $2 \le k \le n+1$, define f(i) = i+1 for i = 1, ..., n-1 and f(n) = k-1. Then $P_f = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, ..., \{1, 2, ..., k-2\}, X\}$ and $|P_f| = k$. For $2 \le j \le n$, define g(i) = i+1 for i = 1, ..., n-2, f(n-1) = n-1, and f(n) = j. It is easy to check that $|P_g| = n+j$, so the values of k between n+2 and 2n are realized as $|P_g|$.

If |X| = n, the example of a function $f : X \to X$ with $|P_f| = 2$ provided in the proof of Proposition 1 was a cycle. It is easy to see that the only way that $|P_f| = 2$ may occur is if X is finite and f is a cycle.

The next proposition shows that the example of a function $f : X \to X$ with $|P_f| = 3$ provided in the proof of Proposition 1 is the only way that $|P_f| = 3$ may occur.

Proposition 2 If $\emptyset \subset A \subset X$ and $\{\emptyset, A, X\} = P_f$ for some $f: X \to X$, then X is a finite set, |A| = 1, and f is given by $f(a_i) = a_{i+1}$ for i = 1, ..., n-1 and $f(a_n) = a_2$ for some labeling $\{a_1, a_2, ..., a_n\}$ of the elements of X.

Proof: Suppose $\emptyset \subset A \subset X$ and $\{\emptyset, A, X\} = P_f$. If $|A| \geq 2$, pick distinct elements $a_1, a_2 \in A$. Now $N(a_1) = i(a_1) = A = i(a_2) = N(a_2)$, so A must contain a cycle C containing $\{a_1, a_2\}$. For $b \in X - A$, i(b) = N(b) must equal X. Now $a_1 \in X = i(b)$, so $b = f^n(a_1)$ for some $n \in \mathbb{N}$ and thus $b \in cl\{a_1\} = \mathcal{O}(a_1) = C \subseteq A$. This contradicts $b \notin A$. Thus, |A| = 1.

If X - A is infinite, then either (a) it contains an infinite chain c, f(c), $f^2(c), \ldots$ and then $cl\{c\}$ and $cl\{f(c)\}$ are distinct proper open sets, or (b) X - A contains (at least) two finite cycles, which give two nonempty proper closed sets. Both cases contradict $|P_f| = 3$, so |A| = 1 and X - A is finite.

Finally, to see f has the form described, suppose $A = \{a_1\}$ and $b \in X - A$. If $cl\{b\} = \mathcal{O}(b) \neq X - A$, then there exists $c \in X - (A \cup cl\{b\})$ and $X - cl\{b\}$ is an open proper set containing $c \notin A$, so $X - cl\{b\} \notin \{\emptyset, A, X\}$.

Both papers introducing functional Alexandroff spaces ([5] as *functional* Alexandroff spaces and [9] using the terminology primal spaces) give characterizations for an Alexandroff topology to be functional Alexandroff, and both papers describe this as their main result. To have a self-contained development here, we present alternate proofs of the characterization in [5], slightly reworded and in less generality to suit our purposes.

Lemma 1 (cf. Theorem 3.5(C_2)[5]) Suppose \mathcal{T} is an Alexandroff topology on an arbitrary set X. The following are equivalent.

- (a) There exist distinct $a, b, c \in X$ with $N(a) = N(b) \subset N(c)$. (See Figure 1(a).)
- (b) There exist distinct $a, b, c \in X$ with $cl\{c\} \subset cl\{b\} = cl\{a\}$.

Furthermore, if \mathcal{T} satisfies these conditions, \mathcal{T} is not functional Alexandroff.

Proof: First, we will show $N(b) \subseteq N(c)$ if and only if $cl\{b\} \supseteq cl\{c\}$. Suppose $N(b) \subseteq N(c)$. Now $x \in cl\{c\} \iff c \in N(x) \iff N(c) \subseteq N(x) \Rightarrow N(b) \subseteq N(x) \iff b \in N(x) \iff x \in cl\{b\}$. Conversely, suppose $cl\{b\} \supseteq cl\{c\}$. Now $x \in N(b) \iff b \in cl\{x\} \iff cl\{b\} \subseteq cl\{x\} \Rightarrow cl\{c\} \subseteq cl\{x\} \iff c \in cl\{x\} \iff x \in N(c)$.

Next, we will show that if $N(b) \subset N(c)$, then $cl\{b\} \neq cl\{c\}$. Indeed, under the hypotheses, $N(b) \neq N(c) \iff c \notin N(b) \iff b \notin cl\{c\} \Rightarrow cl\{b\} \neq cl\{c\}$. Similarly, if $cl\{b\} \supset cl\{c\}$, then $b \notin cl\{c\} \Rightarrow c \notin N(b) \Rightarrow N(b) \neq N(c)$. With the previous paragraph, this shows (a) and (b) are equivalent.

Now N(a) = N(b) implies $b \in N(a)$, so $f^n(b) = a$ for some $n \in \mathbb{N}$, and similarly, $f^m(a) = b$ for some $m \in \mathbb{N}$. Thus, $a = f^n(b) = f^{n+m}(a)$, so a and bare in a cycle. Now $N(b) \subset N(c)$ implies $b \in N(c)$, so $c = f^k(b)$ for some $k \in \mathbb{N}$ and thus c is in the cycle with a and b. This implies N(b) = N(c), contrary to $N(b) \subset N(c)$.

Lemma 2 (cf. Theorem 3.5(C_1)[5]) Suppose \mathcal{T} is an Alexandroff topology on an arbitrary set X. The following are equivalent.

- (a) There exist $a, b, c \in X$ with $N(a) \subset N(b), N(c)$, with N(b) and N(c) not nested (that is, with $N(b) \not\subseteq N(c)$ and $N(c) \not\subseteq N(b)$. (See Figure 1(b).)
- (b) There exist $a, b, c \in X$ with $cl\{c\}, cl\{b\} \subset cl\{a\}$, with $cl\{b\}$ and $cl\{c\}$ not nested.

Furthermore, if \mathcal{T} satisfies these conditions, \mathcal{T} is not functional Alexandroff.

Proof: The equivalence of (a) and (b) follows from the equivalence of $N(b) \subseteq N(c)$ and $cl\{b\} \supseteq cl\{c\}$ and the corresponding statement for strict inclusions given in the proof of Lemma 1. Note that the conditions (a) and (b) each imply that the points a, b, c are distinct.

Suppose \mathcal{T} satisfies (a). Now $a \in N(b)$ implies $b = f^n(a)$ for some $n \in \mathbb{N}$, and similarly $a \in N(c)$ implies $c = f^m(a)$ for some $m \in \mathbb{N}$. If $n \leq m$, say m = n + k, then $c = f^m(a) = f^k(f^n(a)) = f^k(b)$, so $b \in N(c)$, giving the contradiction that $N(b) \subseteq N(c)$. A similar contradiction follows if m < n.

Fig. 1 Minimal neighborhood configurations which imply the space is not functional Alexandroff, as characterized in (a) Lemma 1 and (b) Lemma 2.

While the previous lemmas hold for arbitrary sets X, in the case of finite sets X they provide the only ways a topology may fail to be functional Alexandroff. The characterization of functional Alexandroff spaces in Theorem 3.5 of [5] is stronger than the one below. It contains an extra condition which does not require the assumption that X be finite. **Theorem 2 (cf. Theorem 3.5[5])** A topology \mathcal{T} on a finite set X is functional Alexandroff if and only if (a) there are no distinct points $a, b, c \in X$ with $N(a) = N(b) \subset N(c)$ and (b) $N(a) \subset N(b), N(c)$ implies N(b) and N(c)are nested.

Again we note that this says the conditions of Lemmas 1 and 2 are the only things that can prevent a topology on a finite set from being functional Alexandroff. We also note that the condition (a) could be replaced by the equivalent (a)' if $a \neq b$ and N(a) = N(b), then $N(a) \not\subset N(c)$ for any $c \in X$. *Proof:* Lemmas 1 and 2 show that if \mathcal{T} is functional Alexandroff, then (a) and (b) hold. Conversely, suppose (a) and (b) hold. We give an algorithm to construct a function f for which $\mathcal{T} = P_f$.

Iterative Step: Let $\mathcal{N} = \{N(x) : x \in X \text{ and } f(x) \text{ has not been defined}\},$ ordered by set inclusion. Pick $a \in X$ such that N(a) is minimal in \mathcal{N} .

If N(a) contains $b \neq a$: the the minimality of N(a) implies N(b) = N(a). Now $\overline{N(a)} = \{a_1, \ldots, a_k\}$ where $N(a_i) = N(a)$ for $i = 1, \ldots, k$. By (a), $N(a) \notin N(c)$ for any $c \in X$. Define $f(a_i) = a_{i+1}$ for $i = 1, \ldots, k-1$ and $f(a_k) = a_1$. Return to the Iterative Step.

If $N(a) = \{a\}$: Suppose $N(a) \not\subset N(b)$ for any $b \in X$. Then define f(a) = aand return to the Iterative Step. If $N(a) = \{a\} \subset N(b)$ for some $b \in X$, by (b), $N(a) \subset N(b), N(c)$ implies N(b), N(c) are nested, so there exists $b^* \in X$ such that N(b) is minimal among the members of \mathcal{N} which strictly contain N(a). Define $f(a) = b^*$.

If there exists $b' \neq b^*$ with $N(b') = N(b^*)$, then by (a) there is no c with $N(b^*) \subset N(c)$. Let $\{x : N(x) = N(b^*)\} = \{b_1, b_2, \dots, b_k\}$ and define $f(b_i) = b_{i+1}$ for $i = 1, \dots, k$ and $f(b_k) = b_1$. Return to the Iterative Step.

If $N(b') \neq N(b^*)$ for any $b' \neq b^*$ and $N(b) \not\subset N(c)$ for any $c \in X$, return to the Iterative Step.

If $N(b') \neq N(b^*)$ for any $b' \neq b^*$ and there exists $c \in X$ with $N(b) \subset N(c)$, by (b) there exists $c^* \in X$ such that $N(c^*)$ is minimal among the members of \mathcal{N} which strictly contain N(b). Define $f(b^*) = c^*$.

If there exists $c' \neq c^*$ with $N(c') = N(c^*)$, then by (a) there is no d with $N(c^*) \subset N(d)$. Let $\{x : N(x) = N(c^*)\} = \{c_1, c_2, \ldots, c_k\}$ and define $f(c_i) = c_{i+1}$ for $i = 1, \ldots, k$ and $f(c_k) = c_1$. Return to the Iterative Step.

From this construction, it is clear that f is a well-defined function on X with $P_f = \mathcal{T}$.

2 Lattice properties of functional Alexandroff topologies

The set A(X) of Alexandroff topologies on X is a sublattice of T(X) and is a complete lattice, but is not a complete sublattice unless T(X) = A(X)(that is, unless X is finite). We will consider the subposet FA(X) of functional Alexandroff spaces.

Proposition 3 The indiscrete topology on X is functional Alexandroff if and only if X is finite.

Proof: If X is finite and f is any cyclic permutation of X, $P_f = \{\emptyset, X\}$. If X is infinite, suppose $P_f = \{\emptyset, X\}$. Pick $a \in X$. Now $cl\{a\} = \{a, f(a), f^2(a), \ldots\} = X$, so X is countable and $f^n(a) \neq a$ for any $n \in \mathbb{N}$. Now $cl\{f(a)\} = \{f(a), f^2(a), f^3(a), \ldots\}$ is a nonempty closed set not containing a, contrary to $P_f = \{\emptyset, X\}$.

FA(X) need not be a lattice. For example, for $X = \mathbb{Z}$, define f(n) = n + 1and g(n) = n - 1. Now P_f is the left ray topology $P_f = \{(-\infty, m) : m \in \mathbb{Z}\} \cup \{\emptyset, \mathbb{Z}\}$ and P_g is the right ray topology. In T(X), the only topology coarser than both P_f and P_g is the indiscrete topology \mathcal{T}_I , so in T(X) and $A(X), P_f \wedge P_g = \mathcal{T}_I$. By Proposition 3, the indiscrete topology on \mathbb{Z} is not functional Alexandroff, so P_f and P_g have no lower bounds in $FA(\mathbb{Z})$.

The main result of this section gives several lattice properties of FA(X).

Theorem 3 (a) FA(X) is a \lor -semilattice and $P_f \lor P_g$ in FA(X) agrees with $P_f \lor P_g$ in T(X).

- (b) If X is finite, FA(X) is a lattice.
- (c) FA(X) is a sublattice of A(X) if and only if $|X| \leq 2$.

Proof: (a) Suppose $P_f, P_g \in FA(X)$ have associated quasiorders \lesssim_f, \lesssim_g . Then $\lesssim_f \cap \lesssim_g$ is a quasiorder \lesssim , and it is easy to verify that the associated Alexandroff topology is $P_f \vee P_g$. It remains to show that the topology associated with $\lesssim_f \cap \lesssim_g$ is functional Alexandroff. Define $h: X \to X$ by $h(x) = f^k(x)$ where $k \in \mathbb{N}$ is the smallest natural number such that $f^k(x) \in \{g(x), g^2(x), g^3(x), \ldots\}$, or h(x) = x if there is no such k. Clearly h is a well-defined function. To show $P_h = P_f \vee P_g$, it suffices to show $N_h(z) = N_f(z) \cap N_g(z)$ for any $z \in X$, or equivalently (since $x \in cl\{z\}$ if and only if $z \in N(x)$), $cl_h\{x\} = cl_f\{x\} \cap cl_g\{x\}$ for all $x \in X$. Suppose x is given. Since $h(x) \in cl_f\{x\} \cap cl_g\{x\}$, it follows that $cl_h\{x\} \subseteq cl_f\{x\} \cap cl_g\{x\}$. Suppose $z \in cl_f\{x\} \cap cl_g\{x\}$. If z = x, then $z \in cl_h\{x\}$, so we may assume $z = f^{k'}(x) = g^{n'}(x)$, where k' > 0. If $h(x) = f^{k_1}(x) = g^{n_1}(x)$, iterating f we get an increasing sequence $k_1 < k_2 < k_3 < \cdots$ such that $f^{k_i}(x) \in \{g(x), g^2(x), g^3(x), \ldots\}$ and $f^j(x) \notin \{g(x), g^2(x), g^3(x), \ldots\}$ for $k_i < j < k_{i+1}$. Now when $k_i = k'$ we have $z = f^{k_i}(x) = h^i(x)$, so $z \in cl_h\{x\}$.

(b) If X is finite, FA(X) has a least element $P_f = \{\emptyset, X\}$ where f is any cyclic permutation of X. By (a) finite (and thus arbitrary) suprema exist in FA(X), so FA(X) is a (complete) lattice.

(c) If $X = \{a\}$, the unique topology on X is generated by the unique function $f : X \to X$. If $X = \{a, b\}$, define f(a) = b, f(b) = a, and for $x \in \{a, b\}, g(x) = a, h(x) = b$, and i(x) = x. Now the four topologies on X are realized as P_f, P_g, P_h, P_i .

If $|X| \geq 3$, pick three distinct elements $x_1, x_2, x_3 \in X$ and define $f(x_1) = x_2, f(x_2) = x_3, g(x_2) = x_1, g(x_1) = x_3$, and for $x \in X - \{x_1, x_2\}, f(x) = g(x) = x$. Figure 2 shows f, g, and the associated topologies P_f, P_g consisting of the increasing sets from the quasiorders shown. In $A(X), P_f \wedge P_g$ has basis of minimal neighborhoods $\{\{x_1, x_2\}, \{x_1, x_2, x_3\}\} \cup \{\{x\} : x \in X - \{x_1, x_2, x_3\}\}$. By Lemma 1, this topology is not in FA(X). In $FA(X), P_f \wedge P_g$ has basis $\{\{x_1, x_2, x_3\}\} \cup \{\{x\} : x \in X - \{x_1, x_2, x_3\}\}$.

Fig. 2 Topologies whose infima in A(X) and FA(X) differ.

For the remainder of this section, we present some specific examples of infima in FA(X).

While Proposition 2 gave an explicit characterization of the three-element functional Alexandroff topologies, the next result shows that every threeelement topology on a finite set is the infimum of functional Alexandroff topologies.

Proposition 4 If X is finite, $\mathcal{T} \in T(X)$ and $|\mathcal{T}| = 3$, then $\mathcal{T} = P_f \wedge P_g$ for some $f, g: X \to X$.

Proof: Suppose $\mathcal{T} = \{\emptyset, A, X\}$ where, after relabeling, $A = \{1, 2, \dots, k\}$ and $X = \{1, 2, \dots, n\}$. Define $f, g: X \to X$ by

$$f(j) = \begin{cases} j+1 \ j = 1, \dots, n-1 \\ k+1 \ j = n \end{cases} \qquad g(j) = \begin{cases} k+1 \ j = 1 \\ n \ j = k+1 \\ j-1 \ j \in X - \{1, k+1\} \end{cases}$$

It is easy to check that $P_f \wedge P_g = \mathcal{T}$.

If $f: X \to X$ is injective, the components (in the graph theoretic sense) of the specialization quasiorder tree can be order isomorphic to \mathbb{Z}, \mathbb{N} , or a finite cycle. Note that finite chains leading into a cycle are not possible. If f is bijective, then components order isomorphic to \mathbb{N} are not possible since $1 \notin f(\mathbb{N})$. If f is bijective and every $x \in X$ is part of a finite cycle, then $P_f = P_{f^{-1}} = \mathcal{P}(\{\mathcal{O}(a) : a \in X\}) = \{C \subseteq X : C \text{ is a cycle of } f\}$. The result below is more general.

Proposition 5 If $f : X \to X$ is bijective, then $P_f \wedge P_{f^{-1}} = \mathcal{P}(\{D : D \text{ is a component of the } \leq_f qoset\})$, and $P_f \vee P_{f^{-1}}$ has basis $\{\{x\} : x \text{ is not in any cycle of } f\} \cup \{C : C \text{ is a finite cycle of } f\}$.

Corollary 1 If $f : X \to X$ is bijective, $P_f \wedge P_{f^{-1}} = \{\emptyset, X\}$ if and only if X has one component (a cycle, or order isomorphic to \mathbb{Z}).

Corollary 2 If f^{-1} exists, P_f is the complement of $P_{f^{-1}}$ in A(X) if and only if X is order isomorphic to \mathbb{Z} . (Observe that in this case, $P_f \wedge P_{f^{-1}} \notin FA(X)$.)

The examples below suggest useful techniques for achieving a desired infimum of P_f, P_g .

Example 1 If $f: X \to X$ is bijective and has three components in the \leq_f qoset isomorphic to \mathbb{Z} and two which are cycles as suggested by Figure 3, then there exists $g: X \to X$, as in Figure 3 with $P_f \wedge P_g = \{\emptyset, X\}$. Slight modifications of this example would show that if the \leq_f qoset has a finite number of components, then there exists a function g with $P_f \wedge P_g = \{\emptyset, X\}$.

Example 2 If $f : X \to X$ is bijective and has a countably infinite number of components isomorphic to \mathbb{Z} in the \lesssim_f qoset and a countable or finite number of components which are cycles, then there exists a $g : X \to X$ with $P_f \land P_g = \{\emptyset, X\}$. Figure 4 suggests f and a function g with the desired properties.

Fig. 4 $P_f \wedge P_g = \{\emptyset, X\}$

3 Complementation in FA(X).

This section is devoted to describing a constructive algorithm to produce a functional Alexandroff complement to any functional Alexandroff topology on a finite set X. This will prove the following result.

Theorem 4 If X is finite, the lattice FA(X) of functional Alexandroff topologies on X is complemented.

Proof: Suppose X is finite and P_f is a functional Alexandroff topology on X. We will construct a function g on X so that P_g is a complement of P_f . Let Q_0 be the qoset diagram for the quasiorder \leq_f (defined by $x \leq_f y$ if and only if $x \in cl\{y\}$, if and only if $x = f^n(y)$ for some $n \geq 0$). Loosely speaking, the points at the top of the qoset for f should be at the bottom of the qoset for g. Let $C_0^1, C_0^2, \ldots, C_0^k$ be the components of Q_0 which have no maximal element. Since X is finite, each C_0^i is a cycle of f. From each C_0^i $(i = 1, \ldots, k)$, pick a representative $c_i \in C_0^i$.

Let $M_0 = \{x \in X : x \text{ is maximal in } Q_0\} \cup \{c_i\}_{i=1}^k$.

Since M_0 contains all \leq_f -maximal points and a point of each cycle C_i^0 not having a maximal element, it follows that every $x \in X$ is in the orbit of some point of M_0 . In particular, $cl_f(M_0) = X$.

Define g to be a cycle through all the points of M_0 , and pick a point $m_0 \in M_0$. Define g(x) = x for each $x \in C_0 \equiv \bigcup_{i=1}^k C_0^i - M_0$. (Thus, every point of a cycle C_0^i is fixed, except the representative point c_i .)

Let $Y_0 = C_0 \cup M_0 = \{x \in X : g(x) \text{ has been defined}\}$. Since Y_0 was taken from the top of the qoset for f, this should be at the bottom of the qoset for g. In future iterations, no further points of X will be fixed by g. All remaining points of X will appear above m_0 in the qoset diagram for g.

> If $x \in M_0 - \{c_i\}_{i=1}^k$, then $N_f(x) = \{x\}$. If $x \in C_0$, then $N_g(x) = \{x\}$ (since nothing will subsequently map to x in future iterations of the algorithm). If $x = c_i = C_0^i \cap M_0$, then $N_f(x) = C_0^i$ and $N_g(x) \cap C_0^i = \{x\}$. In all cases, $N_f(x) \cap N_g(x) = \{x\}$.

Now we are set to start an inductive argument.

Suppose g(x) has been defined on Y_j and m_j has been defined. (**)

Let $Q_{j+1} = X - Y_j$ (considered as a qoset diagram) be the set of points of X for which g(x) has not yet been defined.

Let $M_{j+1} = \{x \in Q_{j+1} : x \text{ is maximal in } Q_{j+1}\}$, and

 $C_{j+1} = \{x \in Q_{j+1} : x \text{ is in a component of } Q_{j+1} \text{ which has no maximal element}\}$. Thus, C_{j+1} consists of the points of the cycles having no "stem" leading into them.

For $x \in C_{j+1}$, define $g(x) = m_j$.

Linearly order the elements $a_1 < a_2 < \cdots < a_i$ of M_{j+1} in any manner, and define

$$g(a_k) = a_{k+1}$$
 for $k = 1, \dots, i-1$
 $g(a_i) = m_j.$

Now let $Y_{j+1} = Y_j \cup M_{j+1} \cup C_{j+1} = \{x \in X : g(x) \text{ has been defined}\}$ and let $m_{j+1} = a_1$ (which is the maximal point of the main branch of the qoset diagram thus far defined for g). Iterate from (**) until all points of X are exhausted.

If $x \in C_{j+1}$, $N_g(x) = \{x\}$ (since nothing will map to x in future iterations of the algorithm). From the definition of M_{j+1} as containing the maximal elements in the f-qoset $X - Y_j$ at which g has not been previously defined, it follows that for $x = a_k \in M_{j+1}$, $N_f(x) \subseteq \{x\} \cup Y_j$. Since $N_g(x) \subseteq M_{j+1} \cup (X - Y_{j+1})$, we have $N_f(x) \cap N_g(x) = \{x\}$. Thus, $P_f \wedge P_g = \mathcal{P}(X)$.

Finally, from the construction, note that for every $x \in X - C_0$, $cl_g(x) = \{x, g(x), g^2(x), \ldots\}$ eventually contains the cycle M_0 . Since $cl_f(M_0) = X$, the only $P_f \vee P_g$ -closed set containing x is X. If $x \in C_0^i - \{c_i\} = C_0^i - M_0$, then $c_i \in cl_f(x) = C_0^i$, and since $cl_g(c_i) = M_0$ and $cl_f(M_0) = X$, again we have that the only $P_f \vee P_g$ -closed set containing x is X.

The example below illustrates the algorithm.

Example 3 For $X = \{a, b, ..., l\}$, let f be the function whose qoset diagram is shown at the top of Figure 5(a). Pick j as the representative element of

the cycle. Then $M_0 = \{a, b, e, g, j\}$ and $C_0 = \{k, l\}$. We pick $m_0 = a$. The algorithm produces the partial qoset shown at the bottom of Figure 5(a). For the next iteration, we have $M_1 = \{c, f\}$ and $C_1 = \{h, i\}$. We linearly order M_1 by c < f and thus $m_1 = f$. Figure 5(b) show the result of this iteration. The final iteration is show in Figure 5(c).

Fig. 5 Iterations of the complementation algorithm.

References

- 1. Alexandroff, P.: Diskrete Räume. Mat. Sb. 2(44), 501-519 (1937)
- 2. Anderson, B. A.: A class of topologies with $T_1\mbox{-}{\rm complements}.$ Fund. Math. 69, 267–277 (1970)
- Anderson, B. A., Stewart, D. G.: T₁-complements of T₁ topologies. Proc. Amer. Math. Soc. 23(1), 77–81 (1969)
- Ayatollah Zadeh Shirazi, F., Golestani, N.: More about functional Alexandroff topological spaces. Scientia Magna 6(4), 64–69 (2010)
- Ayatollah Zadeh Shirazi, F., Golestani, N.: Functional Alexandroff spaces. Hacettepe Journal of Mathematics and Statistics 40(4), 515–522 (2011)
- Belaid, K., Cherif, B., Echi, O.: Quasi-spectral binary relational and ordered disjoint unions. J. Math Sci. (Calcutta) 11(2) 139–157 (2000)
- Brown, J. I., Watson, S.: The number of complements of a topology on n points is at least 2ⁿ (except for some special cases). Discrete Math. 154, 27–39 (1996)
- Dahane, I., Lazaar, S., Richmond, T., Turki, T.: On resolvable primal spaces, Quaestiones Mathematicae 42(1) 15–35 (2019)
- Echi, O.: The category of flows of set and top. Topology and its Applications 159(9), 2357–2366 (2012)
- Echi, O., Turki, T.: Spectral primal spaces, J. Alg. and its Apps. 18(2) 1950030 (2019)
 Haouati, A., Lazaar, S.: Primal spaces and quasihomeomorphisms. Appl. Gen. Topol. 16(2), 109–118 (2015)
- 12. Hartmanis, J.: On the lattice of topologies, Canad. J. Math. 10 547-553 (1958)
- D. Jakubíková-Studenovská, L. Janičková, Construction of a complementary quasiorder, Algebra and Discrete Mathematics 25(1), 39–55 (2018)
- Lamper, M.: Complements in the lattice of all topologies of topological groups. Arch Math. (Brno) 10(4), 221–230 (1974) (1975)
- Lazaar, S., Richmond, T., Sabri, H.: Homogeneous functionally Alexandroff spaces. Bulletin of the Australian Mathematical Society, 97(2), 331–339 (2018)
- Lazaar, S., Richmond, T., Sabri, H.: The Autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Communications in Algebra, 47(9) 3818– 3289 (2019)
- 17. Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaestiones Mathematicae ${\bf 40}(1),\,17{-}28$ (2017)
- Mhemdi, A., Richmond, T.: Complements of convex topologies on products of finite totally ordered spaces. Positivity 21(4), 1369–1382 (2017)
- Richmond, T.: Quasiorders, principal topologies, and partially ordered partitions. Internat. J. Math. & Math. Sci. 21(2), 221–234 (1998)

- Richmond, T.: Complements in the lattice of locally convex topologies. Order 30(2) 487–496 (2013)
- Schnare, P. S.: Multiple complementation in the lattice of topologies, Fund. Math. 62 53–59 (1968)
- Schnare, P.S.: The topological complementation theorem a la Zorn. Proc. Amer. Math. Soc. 35(1) 285–286 (1972)
- Steiner, A. K.: The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122, 379–398 (1966)
- 24. Steiner, A. K.: Complementation in the lattice of $T_1\text{-topologies}.$ Proc. Amer. Math. Soc. 17, 884–886 (1966)
- Steiner, A. K., Steiner, E. F.: Topologies with T₁-complements. Fund. Math. **61**, 23–28 (1967)
- Van Rooij, A. C. M.: The lattice of all topologies is complemented. Canad. J. Math. 20, 805–807 (1968)
- Watson, S.: The number of complements in the lattice of topologies on a fixed set. Topology Appl. 55(2), 101–125 (1994)
- Uzcátegui, C.: Maximal complements in the lattice of pre-orders and topologies. Topology Appl. 132(2), 147–157 (2003)