
COLLECTIONS OF MUTUALLY DISJOINT CONVEX SUBSETS OF A
TOTALLY ORDERED SET

TYLER CLARK AND TOM RICHMOND

Abstract. We present a combinatorial proof of an identity for F2n+1 by counting the
number of collections of mutually disjoint convex subsets of a totally ordered set of n points.
We discuss how the problem is motivated by counting certain topologies on finite sets.

Theorem. Given a totally ordered set X of n points, the number C(n) of collections of
mutually disjoint convex subsets of X is given by

C(n) = 1 +
nX

p=1

pX

j=1

µ
n− p + j

j

∂µ
p− 1
j − 1

∂
= F2n+1.

Proof. For any natural number k, let k denote the set {1, 2, . . . , k} with the usual total order
1 < 2 < · · · < k. Note that a convex subset of k is simply an interval in k. Suppose C is
a collection of mutually disjoint convex subsets of X = n. We will call the members of C
blocks. If C has j blocks (j = 0, . . . , n) and |

S
C| = p, these p elements may be divided into

j convex blocks in
°p−1
j−1

¢
ways by inserting j − 1 dividers into the p − 1 gaps between the p

points. Now we may totally order the n − p points and j blocks, by choosing which of the
n− p+ j items will be blocks, in

°n−p+j
j

¢
ways. Summing as p goes from 1 to n and as j goes

from 1 to p, and adding the one exceptional case corresponding to j = 0, we have

C(n) = 1 +
nX

p=1

pX

j=1

µ
n− p + j

j

∂µ
p− 1
j − 1

∂
. (1)

We may also find a recursive formula for C(n). For any collection C of mutually disjoint
convex subsets of n, consider the point n ∈ n. Now n 6∈

S
C if and only if C is one of

the C(n − 1) collections of mutually disjoint convex subsets of n− 1. Furthermore, n ∈
{j + 1, . . . , n} ∈ C where, for now, j ∈ {1, 2, . . . , n − 1}, if and only if C \ {{j + 1, . . . , n}}
is one of the C(j) collections of mutually disjoint convex subsets of j . If j = 0, that is,
if n ∈ {1, 2, . . . , n} ∈ C, then C = {n} is the unique acceptable collection, and for this
reason, we adopt the convention that C(0) = 1. Now summing over all cases n 6∈

S
C and

n ∈ {j + 1, . . . , n} ∈ C for j = 0, 1, . . . , n− 1, we have

C(n) = C(n− 1) +
n−1X

j=0

C(j). (2)

From either formula (1) or (2), we find the initial values of the sequence {C(n)}1n=0 to
be 1, 2, 5, 13, 34, 89, . . . , which agree with the values of F2n+1. Suppose C(n) = F2n+1 for
n = 1, 2, . . . , k − 1. From the recurrence formula (2) we have
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C(k) = F2k−1 +
k−1X

j=0

F2j+1.

Applying the identity
Pm

j=0 F2j+1 = F2m+2 (Identity #2 in [2], noting their convention that
fn = Fn+1), we have C(k) = F2k−1 + F2k = F2k+1. With the initial cases, this shows that
C(n) = F2n+1 for all natural numbers n. §

The second half of the proof above, showing that C(n) = F2n+1, can also be accomplished
using a tiling argument of Anderson and Lewis [1] which allows tiles of any length. Think of
a convex subset of k as a white tile on a 1 × k strip. Then a collection of mutually disjoint
convex subsets of k may be represented by a tiling of a 1 × k strip by white tiles of various
lengths and red squares in any remaining gaps, and the number of such tilings is C(k).
Having tiled a 1 × k strip, we may obatain a suitable tiling of a 1 × (k + 1) strip either by
appending a red square in the k + 1st position (producing C(k) tilings), appending a white
square in the k + 1st position (producing C(k) tilings), or, if the tile covering the kth slot is
white, it may be expanded to cover the k+1st slot. To count these expansions easily, expand
the tile covering the kth slot, red or white, to cover the k + 1st slot (in C(k) ways), then
remove those C(k − 1) ending in a red domino (and leaving a suitable tiling of a 1× (k − 1)
strip). Thus, C(k + 1) = 3C(k) − C(k − 1). This recurrence relation is satisfied by F2n+1

(see Identity #7 in [2]), and since the initial terms agree, we conclude that C(n) = F2n+1

for all natural numbers n. The authors are grateful to the referee for pointing out this tiling
argument.

For a fixed p, the second factors
°p−1
j−1

¢
in the double sum of the theorem constitute the

(p− 1)st row of Pascal’s triangle, while the values of the first factors
°n−p+j

j

¢
=

°n−p+j
n−p

¢
are a

subset of the (n− p)th diagonal. Thus, the double-sum formula for F2n+1 − 1 can be viewed
as the sum of dot products of vectors in Pascal’s triangle, as illustrated below for n = 4.
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The sum of the dot products of the circled pairs of vectors is F2(4)+1 − 1.

Our motivation for this problem arose from counting certain finite topologies, as described
below. If j is any point in a finite topological space, let N(j) be the intersection of all open
sets containing j.

Corollary. Let T be the set of topologies τ on n such that the basis {N(j) : j ∈ n} consists
of a collection C of mutually disjoint convex subsets of n, or such a collection C together with
n. Then |T | = F2n+1 − 1.

The corollary follows from the almost one-to-one correspondence between the topologies
of T and the collections C counted by C(n), where for j ∈ n \

S
C, we take N(j) = n.
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However, the collection having no blocks generates the same topology—namely the indiscrete
topology—as the collection having a single block containing all the points.
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