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A curious example involving ordered
compactifications

Thomas A. Richmond

Abstract. For a certain product X×Y where X is a compact, con-
nected, totally ordered space, we find that the semilattice Ko(X × Y )
of ordered compactifications of X × Y is isomorphic to a collection
of Galois connections and to a collection of functions F which deter-
mines a quasi-uniformity on an extended set X ∪ {±∞}, from which
the topology and order on X is easily recovered. It is well-known that
each ordered compactification of an ordered space X × Y corresponds
to a totally bounded quasi-uniformity on X × Y compatible with the
topology and order on X × Y , and thus Ko(X × Y ) may be viewed
as a collection of quasi-uniformities on X × Y . By the results here,
these quasi-uniformities on X ×Y determine a quasi-uniformity on the
related space X ∪ {±∞}.
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1. Introduction.

An ordered space is a triple (X, τ,≤) where (X, τ) is a topological space and
≤ is a partial order on X. All ordered spaces considered here will have a convex
topology (τ has a base of ≤-convex sets) and will satisfy the T2-ordered property
(the graph of ≤ is closed in (X, τ)2). An ordered compactification of (X, τ,≤) is
a compact T2-ordered space (X ′, τ ′,≤′) such that (X, τ) is (homeomorphic to)
a dense subset of (X ′, τ ′) and ≤′ extends the order ≤ on X. An ordered space
has an ordered compactification if and only if it is completely regular ordered,
as defined in [11]. The collection Ko(X) of all ordered compactifications of
a completely regular ordered space X may be ordered by taking X ′ ≥ X ′′ if
and only if there exists a continuous increasing function f : X ′ → X ′′ with
f(x) = x for all x ∈ X. Ko(X) is a complete upper semilattice with largest
element βoX, the Stone-Čech ordered- or Nachbin- compactification.
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A quasi-uniformity U is said to be compatible with an ordered space (X, τ,≤)
if

⋂U is the graph of the partial order ≤ and the topology from the uniformity
U ∪ U−1 is τ . There is a one-to-one correspondence (via completion) between
the elements of the set Q(X) of compatible totally bounded quasi-uniformities
on (X, τ,≤) and the ordered compactifications of (X, τ,≤). Details of this
correspondence as well as other basic information on quasi-uniformities may
be found in [4]. As posets, (Ko(X),≤) ≈ (Q(X),⊆).

For a particular example X × Y below, we will find that the poset Ko(X ×
Y ) ≈ Q(X × Y ) is also isomorphic to a poset of Galois connections and to a
collection F of functions on an extended space X ∪ {±∞}. Furthermore, the
collection F is shown to be an “F-poset” on X ∪ {±∞}, thereby determining
a quasi-uniformity on X ∪{±∞} which, after a simple quotient identifying the
introduced points ±∞ with the extreme points ofX, gives the original topology
and order on X. This gives an example of a set of quasi-uniformities Q(X×Y )
on one set determining a quasi-uniformity (detemined by the F-poset F) on
another set X ∪ {±∞}. This example was announced, without proofs, in [10].

In all that follows, we assume that X and Y are totally ordered spaces, and
that X × Y has the product topology and the product order (a, b) ≤ (c, d) if
and only if a ≤ c and b ≤ d. In general βoX × βoY ≤ βo(X × Y ). In [5] it was
shown that for totally ordered spaces X and Y , βoX × βoY �= βo(X × Y ) if
and only if βoX \X contains a point which is the limit of a monotone sequence
in X and Y contains a strictly monotone, oppositely directed sequence, or the
dual condition (obtained by interchanging the roles of X and Y ) holds.

In [9], the part of the semilattice Ko(X × Y ) consisting of those ordered
compactifications of X × Y below βoX × βoY was described. In case βoX ×
βoY = βo(X × Y ), we have a description of the entire semilattice Ko(X × Y ).

2. The Example via Galois Connections.

Let X be a compact, connected, totally ordered space. We will denote the
least and greatest elements of X, respectively, by 0 and 1. Let Y = [0, ω1) ∪
{ω1 + 1} be the set of ordinals less than the first uncountable ordinal, together
with an isolated top point ω1 + 1, and give Y the usual topology and order.
From the results of [5], we have

βo(X × Y ) = βoX × βoY = X × [0, ω1] ∪ {ω1 + 1}.
The results of [9] allow us to completely describe Ko(X × Y ), and we shall
do so here. The points of X × {ω1 + 1} prevent any identification of points of
βo(X×Y )\(X×Y ), so all ordered compactifications of X×Y are topologically
equivalent to βo(X×Y ). That is, all smaller ordered compactifications ofX×Y
are obtained from βo(X × Y ) by adding order to βo(X × Y ) in a way to get
a closed order relation on βo(X × Y ) which introduces no new order on the
original spaceX×Y . The latter condition implies that any added order must be
between points of the segment X×{ω1} and points of the segment X×{ω1+1}.
We may add order by making a point x of X ×{ω1} greater than a point f(x)
of X × {ω1 + 1} (and by transitivity, x must also be greater than a decreasing
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segment [←, f(x)] of X × {ω1 + 1}. Dually, order may be added by making a
point a of X ×{ω1 +1} less than each point of an increasing segment [g(a),→]
of X × {ω1}. Figure 1 suggests the possible additional order.

❆
❆

❙
❙� ω1

� 0

� ω1 + 1

0 1

� �� �

� �� �

x g(a)
−∞ ∞

f(x) a−∞ ∞

Figure 1. Additional order on X × [0, ω1] ∪ {ω1 + 1}.

Thus, any ordered compactification of X ×Y determines a pair of functions
f and g where, for x ∈ X ×{ω1}, f(x) is the greatest element of X ×{ω1 + 1}
which is less than x, with f(x) = −∞ if x is not greater than any points
of X × {ω1 + 1}; and for x ∈ X × {ω1 + 1}, g(x) is the least element of
X × {ω1} which is greater than x, with g(x) = ∞ if x is not less than any
elements of X × {ω1}. Now f and g may be considered to be functions on
X ∪ {±∞}, where ±∞ are topologically isolated fixed points of f and g, with
−∞ < x < ∞ ∀x ∈ X. One may show that f and g are increasing functions,
f is continuous from the right, g continuous from the left, and f and g satisfy
the inequality

f(x) < g(f(x)) ≤ x ≤ f(g(x)) < g(x) ∀x ∈ X.
In particular, note that f is strictly below the diagonal on X; the function
f can have no fixed points in X. Consider the copies of x− and x+ of x in
X × {ω1} and X × {ω1 + 1}, respectively. We already have x− ≤ x+, and
if x were a fixed point of f , this would imply x− ≥ x+, and thus x− = x+,
that is, x− and x+ should be identified in the ordered compactification. This
is impossible, however, as x+ ∈ X × Y and x− ∈ βo(X × Y ) \ (X × Y ).

Now any element ofKo(X×Y ) determines a pair of functions (f, g) as above,
and conversely any such pair of functions determines an ordered compactifica-
tion of X × Y .

The definition and proposition below may be found in [3]. (A symmetric
but contravariant form of the definition appears in the literature as well; we
use the covariant form of [3].)

Definition 2.1. Suppose (P,≤) and (Q,≤′) are partially ordered sets. If f :
P → Q and g : Q→ P are functions such that for all p ∈ P and all q ∈ Q,

p ≤ g(q) ⇐⇒ f(p) ≤′ q,
then the quadruple (P, f, g,Q) is called a Galois connection.
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Proposition 2.2. (See [3].) Let (P,≤) and (Q,≤′) be partially ordered sets
and f : P → Q and g : Q→ P be functions. Then the following are equivalent:

(1) (P, f, g,Q) is a Galois connection.
(2) f is increasing, and g(q) = max{z ∈ P : f(z) ≤′ q} for each q ∈ Q.
(3) f and g are increasing, x ≤′ f(g(x)) for all x ∈ Q and g(f(x)) ≤ x for

all x ∈ P .

With P = Q = X ∪ {±∞}, we see that each ordered compactification of
X × Y corresponds to a Galois connection (P, f, g,Q), and, by (2) above, the
second function g is in fact determined by the first function f . For our space
X × Y , it follows that Ko(X × Y ) is isomorphic to the collection of functions

F = {f : X ∪{±∞} → X ∪{±∞} | f is increasing, continuous
from the right, strictly below the diagonal on X, with ±∞
as fixed points}.

The order on F is the dual pointwise order on functions: r ≤ s if and only if
r(x) ≥ s(x) ∀x.

3. The Example via F-posets.

Given a poset (D,≤), certain families of functions on D may serve as the
“lower edges” of entourages of a basis for a quasi-uniformity on D. Ralph Kum-
metz [7] has fruitfully investigated some such families. The definitions and
results below are from [7].

Definition 3.1. If (D,≤) is a poset, a directed family F of functions on D is
an F-poset on D if

(a) each f ∈ F is increasing,
(b) each f ∈ F is below the diagonal ∆D, and
(c) ∀f ∈ F ∃g ∈ F with f ≤ g ◦ g.

An F-poset F is approximating if supF = ∆D.

Proposition 3.2. If F is an F-poset on D and for f ∈ F , Uf = {(x, y) ∈
D ×D : y ≥ f(x)}, then {Uf : f ∈ F} is a basis for a quasi-uniformity UF on
D.

For our example X × Y , we have seen that Ko(X × Y ) ≈ F where F is as
described at the end of the previous section. We will now show that F is an
F-poset on X ∪ {±∞}.

First observe that F is a directed family, for f, g ∈ F ⇒ f ∨ g ∈ F . Indeed,
as it is the dual pointwise order on F which makes it isomorphic to Ko(X×Y ),
this shows that the complete ∨-semilattice Ko(X × Y ) is a lattice. However,
Ko(X×Y ) fails to be a complete lattice: Let (zλ)λ∈I be an increasing net in X
converging to the greatest element 1, and for each λ ∈ I, let Kλ be the ordered
compactification of X × Y determined by the function fλ defined by

fλ(x) =



−∞ if x < 1
zλ if x = 1
∞ if x =∞
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Now
∨{fλ : λ ∈ I} has 1 as a fixed point, so

∨{fλ : λ ∈ I} �∈ F . Consequently,
the subset {Kλ}λ∈I of Ko(X × Y ) has no infimum.

We have already noted that each f ∈ F is strictly below the diagonal on X,
and therefore is below the diagonal on X ∪ {±∞}. To prove that F satisfies
the third defining condition of an F-poset, we will need a definition and two
lemmas.

Definition 3.3. A function f on a poset D is finitely separated from the iden-
tity if and only if there exists a finite subset M of D such that ∀x ∈ D, ∃mi ∈
M with f(x) ≤ mi ≤ x.
Lemma 3.4. With F as defined at the end of the previous section, each f ∈ F
is finitely separated from the identity.

Proof. As ±∞ are fixed points of f ∈ F , the choice of mi such that f(±∞) ≤
mi ≤ ±∞ is determined, so it suffices to show that f ∈ F is finitely sepa-
rated from the identity on X. Suppose f ∈ F is given. Let m1 be the least
element 0 of X. Suppose mi is defined. If {y ∈ X|f(y) ≥ mi} = ∅, then
{m1, . . .mi} finitely separates f from the identity. Otherwise, define mi+1 =
inf{y ∈ X|f(y) ≥ mi} Since f is continuous from the right, f(mi+1) ≥ mi.
Since f is below the diagonal, mi+1 > f(mi+1) ≥ mi. We will now show that
this process must terminate after finitely many steps. Assume the procedure
does not terminate. Then we get a strictly increasing sequence {mi}∞i=1 in a
compact totally ordered space. This sequence must have a limit m = inf{upper
bounds of {mi}∞i=1}. Now ∀i ∈ N, mi+1 = inf{x|f(x) ≥ mi} < m implies
∃x = x(i) ∈ X such that x < m and f(x) ≥ mi. For this x, we have
mi ≤ f(x) < x < m. This last inequality yields f(x) ≤ f(m), and thus
mi ≤ f(m) < m ∀i. Now f(m) is an upper bound of {mi}∞i=1 smaller than m,
a contradiction.

In the setting of totally ordered spaces, f finitely separated from the identity
is equivalent to the existence of a step function with finite range between f and
the identity. With the mi’s as defined in Lemma 3.4,

s(x) =
{

max{mi|mi ≤ x} if x ∈ X
x if x = ±∞

is a step function with finite range, continuous from the right with f(x) ≤
s(x) ≤ x. Note that the last inequality may not be strict on X, so s itself
may not be an element of F . We will alter s to get a function r ∈ F with the
properties of s.

Lemma 3.5. For each f ∈ F , there exists a step function r ∈ F with a finite
range R such that r−1(y) is not a singleton ∀y ∈ R \ {∞}, f(x) ≤ r(x) ≤
x ∀x ∈ X ∪ {±∞}, and r(x) < x ∀x ∈ X.

Proof. As a compact connected totally ordered space, X is order dense, that
is, ∀a, b ∈ X with a < b, there exists c ∈ X with a < c < b. In particular, each
a ∈ X \ {0} is accessible form the left in the sense that there is a net in X of
points below a which converges to a.



230 T. A. Richmond

We will construct the required function r as a modification of s above. As
before, we take ±∞ as fixed points of r and concentrate on the definition of
r on X. Recall that m1 = the least element of X. Since m2 = inf{y|f(y) ≥
m1} = inf{y|f(y) �= −∞}, continuity from the right implies f(x) = −∞ for
all x < m2. Now f(m2) < m2 and order density implies that we may choose
k2, l2 ∈ X with

m1 ≤ f(m2) < k2 < l2 < m2.

Since f is continuous from the right and strictly below the diagonal on X,
the definition of mi implies mi−1 ≤ f(mi) < mi. Since f(m2) < k2 and f
is continuous from the right, ∃n2 ∈ X with m2 < n2 < m3 and f(n2) < k2.
(Otherwise, f(n2) ≥ k2 ∀n2 ∈ (m2,m3)⇒ f(m2) ≥ k2, a contradiction.)
r(x) will be a piecewise defined function, defined inductively.
Define

r(x) =
{
−∞ if x < l2
k2 if x ∈ [l2, n2)

Having defined ki−1, li−1, ni−1 with ki−1 < li−1 < mi−1 < ni−1 < mi, pick
ki, li, ni with

f(mi) ∨ ni−1 < ki < li < mi < ni < mi+1

and with f(ni) ≤ ki. [Since mi is accessible from the left, such a ki and li exist.
If f(ni) ≥ ki∀ni ∈ (mi,mi+1), then continuity of f from the right would imply
f(mi) ≥ ki, contrary to f(mi) < ki. Thus, such an ni also exists.] Now define

r(x) =
{
mi−1 if x ∈ [ni−1, li)
ki if x ∈ [li, ni) for i = 3, . . . , z − 1

and (with mz being the last of the mis) define

r(x) =
{
mz if x ∈ [nz−1, 1]
∞ if x =∞.

We will verify that r satisfies the required conditions. The range of r is
R = {−∞, k2,m2, k3,m3, . . . , kz−1,mz,∞}, and f−1(y) is not a singleton for
any y ∈ R{∞}. Clearly r is continuous from the right. It remains to show
f(x) ≤ r(x) < x for x ∈ X.

If x ∈ (←, l2), then f(x) = −∞ = r(x) < x.
If x ∈ [li, ni), we have r(x) = ki. Now li ≤ x < ni implies

f(li) ≤ f(x) ≤ f(ni) ≤ ki = r(x) < li ≤ x,
and this shows the desired inequalities.

If x ∈ [ni−1, li), then r(x) = mi−1 < ni−1 ≤ x. To see that f(x) ≤
r(x) = mi−1, suppose not. Then f(x) > mi−1, so x ∈ {y|f(y) ≥ mi−1} so
mi = inf{y|f(y) ≥ mi−1} ≤ x, contrary to x < li < mi.

Now we are ready to verify that F , the collection of functions isomorphic to
Ko(X × Y ), satisfies the final condition required of an F-poset.

Proposition 3.6. For any f ∈ F , there exists g ∈ F with f ≤ g ◦ g, and thus
F is an F-poset.
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Proof. Without loss of generality, we may assume f is a step function with finite
range, with the inverse image of any singleton in X never being a singleton.
(For any f ∈ F , we have seen there exists such a step function r with f ≤ r.
Now r ≤ g ◦ g implies f ≤ g ◦ g). Suppose the elements of the range of f , listed
in increasing order, are m0 = −∞,m1, . . . ,mz,∞. Define ai (i = 0, 1, . . . , z)
by f−1(mi) = [ai, ai+1). In particular, note that f(ai) = mi. Furthermore, we
may assume f is such that ai < mi+1 ∀i = 0, 1, . . . , z since for each index at
which this fails, we have mi < mi+1 ≤ ai < ai+1, and we may replace mi+1

with a value m∗i+1 strictly between ai and ai+1 (raising the height of that step).
Now m1 = f(a1) < a1, so there exist y1, w1 ∈ X with m1 < y1 < w1 < a1.
Define

g(x) =
{
m0 = −∞ if x ∈ (←, y1)
m1 if x ∈ [y1, a1)

Clearly g(x) < x on this section of the domain of g. Observe that f(x) ≤
g ◦ g(x):

x ∈ (←, y1)⇒ g(g(x)) = g(m0) = m0 = −∞ = f(x)

x ∈ [y1, a1)⇒ g(g(x)) = g(m1) = m0 = f(x).
Now m2 = f(a2) < a2, so there exist y2, w2 ∈ X with

a1 ∨m2 < y2 < w2 < a2.

Define

g(x) =
{
w1 if x ∈ [a1, y2)
m2 if x ∈ [y2, a2)

Clearly g(x) < x.

x ∈ [a1, y2)⇒ g(g(x)) = g(z1) = m1 = f(x)

x ∈ [y2, a2)⇒ g(g(x)) = g(m2) = z1 ≥ m1 = f(x).
Now suppose we have defined yi, wi with

ai−1 ∨mi < yi < wi < ai,

and have defined g for x ∈ (←, ai). Suppose i < z. Since mi+1 = f(ai+1) <
ai+1, ∃yi+1, wi+1 ∈ X with

mi < ai ∨mi+1 < yi+1 < wi+1 < ai+1.

Define

g(x) =
{
wi if x ∈ [ai, yi+1)
mi+1 if x ∈ [yi+1, ai+1))

As above, we may show f(x) ≤ g ◦ g(x) < x. Define

g(x) =
{
wz if x ∈ [az, 1]
∞ if x =∞.

For x ∈ (az, 1], clearly g(x) < x, and g(g(x)) = g(wz) = mz = f(x). With g as
defined, g ∈ F and f ≤ g ◦ g.
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Having shown that F ≈ Ko(X × Y ) is an F-poset on X ∪ {±∞}, F is a
basis for a quasi-uniformity UF on X ∪ {±∞}. We will now investigate the
associated order

⋂UF and topology τ(UF ∪U−1
F ) on X∪{±∞}. We note again

that the topology in question is the topology from the associated uniformity.
For brevity, we will denote this topology by τF .

If F were an approximating F-poset on X∪{±∞}, then
⋂UF would consist

of the diagonal of X ∪ {±∞} and everything above it; that is,
⋂UF would be

the graph of the order on X ∪{±∞}. However, F fails to be approximating at
exactly one point, namely the smallest element 0 of X. If a ∈ X \ {0}, then a
is accessible from below by a net (xλ)λ∈I in X. Now for any λ ∈ I, define

fλ(x) =
{
xλ if x ≥ a
−∞ if x < a

Now fλ ∈ F ∀λ ∈ I and sup{fλ(a)} = sup{xλ} = a. It follows that sup{f(a) :
f ∈ F} = id(a) ∀a ∈ X \ {0}. The equality holds for a = ±∞ as well. Thus,
if supF is not the identity on X ∪ {±∞}, equality can only fail at a = 0. As
each f ∈ F is strictly below the diagonal on X, we have f(0) = −∞ ∀f ∈ F ,
so sup{f(0) : f ∈ F} = −∞ �= id(0). Thus,

⋂UF , when restricted to X, gives
the graph of the order on X except at the least element 0 of X. Instead of
eliminating the introduced points ±∞ by considering the restriction of

⋂UF
to X, if we eliminate the introduced points ±∞ by identifying −∞ with 0
and identifying ∞ with 1, the natural ordered quotient (see [8]) would have
the identified point {−∞, 0} as least element and {1,∞} as greatest element.
Thus, the order introduced by the quasi-uniformity UF gives, after this ordered
quotient identifying the extreme points ofX with the newly introduced extreme
points −∞ and ∞, the original order on X.

Turning our attention to the topology τF , we will find a similar situation. We
note briefly that Kummetz has shown (2.9 of [7]) that if F is an F-poset with
each f ∈ F finitely separated from the diagonal—as our F is by Lemma 3.4—
then τF is totally bounded. The topology of a compact T2 space arises from a
unique uniformity consisting of the neighborhoods of the diagonal. The neigh-
borhoods of the diagonal of the compact totally ordered space X must touch
the diagonal at the maximum and minimum points, yet the functions of F are
all strictly below the diagonal at 0 and 1. As the functions of F serve as the
“lower edges” of the basic entourages of UF , it follows that restriction of the
topology τF on X ∪ {±∞} to X does not agree with the original topology τ
on X. However, on any compact subset [xλ, yλ] of X where 0 < xλ < yλ < 1,
each neighborhood V of the diagonal does contain the restriction f |[xλ,yλ] of
some f ∈ F . (To see this, find a finite collection {Ni × Ni : i = 1, . . . ,m}
of open squares whose union is contained in V , and construct a step function
below the diagonal and just above the bottom edges of the squares.) Thus, the
restriction of τF to any subset W of X \ {0, 1} agrees with the restriction of
the original topology τ to W . The problem at the endpoints 0 and 1 shows
that the restriction of τF to X is not the appropriate topology on X. However,
the quotient identifying {−∞, 0} and {1,∞} gives the correct topology τ on
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X. Essentially, the problem that each f ∈ F was strictly below the diagonal
at 0 and 1 is solved by identifying these endpoints, respectively, with the fixed-
points −∞ and ∞, allowing the associated function on the quotient to touch
the diagonal at the extreme points {−∞, 0} and {1,∞} of the quotient space.

For our exampleX×Y , we have seen that ((Ko(X×Y ),≤) ≈ (F ,≥) ≈ (Q,⊆
), where Q is the collection of compatible totally bounded quasi-uniformities
on X × Y . Since F determined a quasi-uniformity on X ∪ {±∞}, we have
an example of a collection Q of quasi-uniformities on one set determining a
quasi-uniformity on another set.

The author is grateful to Ralph Kummetz and Hans-Peter Künzi for several
helpful suggestions during the preparation of this paper.
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