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THE NUMBER OF CONVEX SETS IN
A PRODUCT OF TOTALLY ORDERED SETS

BRANDY BARNETTE, WARREN NICHOLS AND TOM RICHMOND

ABSTRACT. We give a formula for the number of convex
sets in a product of two finite totally ordered sets with the
product order and discuss related counting problems.

1. Introduction. The set {1, 2, . . . , n}, together with the natural
order 1 < 2 < · · · < n, will be denoted [n]. All products [n]× [m] will
carry the product order (componentwise order), which is defined by
(a, b) ≤ (x, y), if and only if a ≤ x and b ≤ y. A set C in a poset X is
convex if x, z ∈ C and x ≤ y ≤ z imply y ∈ C. Alternately, C ⊆ X is
convex if C = i(C)∩ d(C) where i(C) = {y ∈X : ∃c ∈ C with y ≥ c} is
the increasing hull of C, and d(C) = {y ∈X : ∃c ∈ C with y ≤ c} is the
decreasing hull of C.

Our investigations were motivated by the classical questions in
topology of finding the number Top(n) of topologies on an n-element set.
The values of Top(n) are known for n≤ 18. The works of Erné [3, 4]
and the references therein are excellent sources. Moving to the category
of ordered topological spaces, a very reasonable and commonly assumed
compatibility condition between the topology τ and order ≤ on set X
is that each point have a neighborhood base of convex open sets. Such
topologies are called convex topologies. The seminal work by Nachbin [6]
provides basic details of ordered topological spaces. An enumeration of
the convex topologies on a totally ordered set with cardinality n≤ 10
was given in [2]. While the goal would be an enumeration of convex
topologies on [n]× [m], here we address more fundamental questions,
counting classes of convex subsets of [n]× [m].

In Section 2, we determine the number of convex subsets of [n]× [m]
which contain points from every row. In Section 3, we determine the
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number of such convex sets which, in addition, are of “full width.”
The main result of the paper is the considerably more complicated
determination in Section 4 of the number of convex subsets of [n]× [m].

Initial investigations on these topics were conducted in [1], the first
author’s master’s thesis, which was directed by the third author. For
the convenience of the reader, a limited amount of material from that
thesis is included here.

2. Convex sets intersecting all rows. We start with the basic
observation that the number of nonempty convex sets in [n] is

(
n+1
2

)
=

1 + 2 + · · · + n. This follows since a convex set in [n] is simply an
interval, and there are n+ 1− j positions for an interval of length j
(j = 1, . . . , n) in [n]. Or, viewing a convex set in [n] as interval [a, b)
with two distinct endpoints a, b∈ {1, 2, . . . , n+1}, there are

(
n+1
2

)
ways

to pick the endpoints.

Let Cvxm(n) denote the number of convex sets in [n]× [m] which
contain points from each of the m rows. Then, the above remarks show
Cvx1(n) = n(n+ 1)/2.

ss ss ss ss ss ss ss ss ss ss ss ss ss ss
k

i j

l k

i j

l

Figure 1. Some configurations of convex sets.

Suppose that C is a convex set in [n]× [2] which contains points in
both rows. The restriction of C to the top row must be an interval [i, j],
and the restriction of C to the bottom row must be an interval [k, l].
To maintain convexity, we must have 1 ≤ i ≤ j ≤ l ≤ n and i ≤ k ≤ l.
Figure 1 suggests some possible positions of i, j, k, l. Summing over
all such configurations of endpoints i, j, l, k gives the expression for
Cvx2(n), shown below.

A convex set C in [n]× [3] which contains points in all rows will
intersect the first and second rows, respectively, in intervals [i, j] and
[k, l], as in the preceding paragraph, and will intersect the third row in
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an interval [p, q] where l≤ q≤ n and k≤ p≤ q, leading to the expression
for Cvx3(n):

Cvx1(n) =

n∑
i=1

n∑
j=i

1 =
1

2
(n)(n+ 1)

Cvx2(n) =

n∑
i=1

n∑
j=i

n∑
l=j

l∑
k=i

1 =
1

12
n(n+ 1)2(n+ 2)

Cvx3(n) =

n∑
i=1

n∑
j=i

n∑
l=j

l∑
k=i

n∑
q=l

q∑
p=k

1

=
1

144
n(n+ 1)2(n+ 2)2(n+ 3).

The numerical coefficients 2, 12, 144 appearing in the formulae for
Cvxm(n) above are m!(m+ 1)!. This leads to the conjecture [1] that

Cvxm(n) =
n(n+ 1)2(n+ 2)2 · · · (n+m− 1)2(n+m)

m!(m+ 1)!

=
1

m+ 1

(
n+m

m

)(
n+m− 1

m

)
.

In order to prove the conjecture, we first develop a recursion for a
related quantity.

Proposition 2.1. Define c(m,u, v) for m≥ 1, u≥ 0 and v ≥ 0 by

c(1, u, v) = 1

and, for m≥ 2,

c(m,u, v) =

u∑
r=0

u+v−r∑
s=1

c(m− 1, r, s).

Then:

(a) for all m≥ 1, u≥ 0, v≥ 1 and n≥ u+v, c(m,u, v) is the number
of convex subsets of [n]× [m] which contain points of each of the m rows
and for which the bottom row is (u, u+ v].

(b) For all m≥ 1 and n≥ 1, c(m+ 1, n, 0) is the number of convex
subsets of [n]× [m] which contain points of each of the m rows.
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Proof.

(a) The assertion is clear when m= 1. Suppose that m≥ 2, and the
result holds for m− 1. Let C be a convex subset of [n]× [m] which
contains points of each of the m rows and for which the bottom row
is (u, u+ v]. By convexity, the second-from-bottom row of C will be
(r, r+ s], where 0≤ r ≤ u and 1≤ s≤ u+ v− r. The first m− 1 rows of
C constitute an arbitrary convex subset of the poset [n]×{2, . . . ,m},
which contains points of each of the m − 1 rows and for which the
bottom row is (r, r+ s]. By the inductive hypothesis applied to that
poset, the number of such sets is c(m− 1, r, s), and our result follows.

(b) We have

c(m+ 1, n, 0) =

n∑
r=0

n−r∑
s=1

c(m, r, s).

Note that the inner sum is empty when r = n. By part (a), the double
sum enumerates the convex subsets of [n]× [m] which contain points of
each of the m rows according to the possibilities for the bottom row. �

In the following proposition, we make use of the standard summation
formula

∑n
k=s

(
k
m

)
=
(
n+1
m+1

)
−
(

s
m+1

)
.

Proposition 2.2. For all m≥ 1, u≥ 0 and v ≥ 0 with m+u+ v ≥ 2,

c(m,u, v) =
u+ vm

m(u+ v+m− 1)

(
u+m− 1

m− 1

)(
u+ v+m− 1

m− 1

)
.

Proof. For m= 1 and m+u+ v ≥ 2, the formula gives the required
value of 1. Suppose that m≥ 2 and the result holds for m− 1. Then,

c(m,u, v) =

u∑
r=0

u+v−r∑
s=1

c(m− 1, r, s)

=

u∑
r=0

u+v−r∑
s=1

r+ s(m− 1)

(m− 1)(r+ s+m− 2)

(
r+m− 2

m− 2

)(
r+ s+m− 2

m− 2

)
.

We shall use r+ s(m− 1) = (r+ s)(m− 1)− r(m− 2) to break the
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sum into two parts. We first have

u∑
r=0

u+v−r∑
s=1

(r+ s)(m− 1)

(m− 1)(r+ s+m− 2)

(
r+m− 2

m− 2

)(
r+ s+m− 2

m− 2

)

=

u∑
r=0

(
r+m− 2

m− 2

) u+v−r∑
s=1

r+ s

r+ s+m− 2

(
r+ s+m− 2

m− 2

)

=

u∑
r=0

(
r+m− 2

m− 2

) u+v−r∑
s=1

(
r+ s+m− 3

m− 2

)

=

u∑
r=0

(
r+m− 2

m− 2

)[(
u+ v+m− 2

m− 1

)
−
(
r+m− 2

m− 1

)]

=

(
u+m−1

m−1

)(
u+ v+m−2

m−1

)
−

u∑
r=0

(
r+m−2

m−2

)(
r+m−2

m−1

)
.

In the calculation of the second part, the reader who does not wish
to contemplate the negative lower binomial arguments, cf., [5], that
occur when m= 2 may instead simply observe that, in that case, the
expression obtained on the last line has the required value of zero.

u∑
r=0

u+v−r∑
s=1

r(m− 2)

(m− 1)(r+ s+m− 2)

(
r+m− 2

m− 2

)(
r+ s+m− 2

m− 2

)

=

u∑
r=0

r

m− 1

(
r+m− 2

m− 2

) u+v−r∑
s=1

m− 2

r+ s+m− 2

(
r+ s+m− 2

m− 2

)

=

u∑
r=0

(
r+m− 2

m− 1

) u+v−r∑
s=1

(
r+ s+m− 3

m− 3

)

=

u∑
r=0

(
r+m− 2

m− 1

)[(
u+ v+m− 2

m− 2

)
−
(
r+m− 2

m− 2

)]
=

(
u+m− 1

m

)(
u+ v+m− 2

m− 2

)
−

u∑
r=0

(
r+m− 2

m− 1

)(
r+m− 2

m− 2

)
.
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When we subtract the double sums, the sums over r cancel. The re-
sulting difference may readily be manipulated into the required form,
and we are done by induction. �

Theorem 2.3. The number of convex sets in [n]× [m] which intersect
all m rows is

Cvxm(n) =
1

m+ 1

(
n+m

m

)(
n+m− 1

m

)
,

that is, Cvxm(n) = N(n + m,m + 1), where N(j, k) is the (j, k)th
Narayana number, appearing as [7, A001263].

Proof. Combining the preceding two propositions, we obtain

Cvxm(n) = c(m+ 1, n, 0)

=
n

(m+ 1)(n+m)

(
n+m

m

)(
n+m

m

)
=

1

m+ 1

(
n+m

m

)(
n+m− 1

m

)
,

as required. �

3. Convex subsets of full width. We define the width w of a set
C ⊆ [n]× [m] by

w = max{x : ∃ (x, y) ∈ C}−min{x : ∃ (x, y) ∈ C}+ 1,

that is, the width w of C is the width of the convex hull of the projection
of C onto [n]. A set C ⊆ [n]× [m] is said to have full width if its width is
n. We are interested in finding the number FWCvxm(n) of full-width
convex sets in [n]× [m] which intersect all m rows. Such sets have a
determined top left point (1,m) and a determined bottom right point
(n, 1), thereby eliminating two of the sums of the calculations given
before Proposition 2.1. The relationship between convex subsets of full
width and arbitrary convex subsets is explored in [1], where one may
also find the first few formulae for FWCvxm(n), three of which are
given below

FWCvx1(n) = 1,
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FWCvx2(n) =

n∑
j=1

n∑
k=1

1 = n2,

FWCvx3(n) =
n∑

j=1

n∑
l=j

l∑
k=1

n∑
p=k

1

=
1

24
(n)(n+ 1)(5n2 + 5n+ 2).

Let C denote a convex subset of [n]× [m] which intersects all m
rows. Suppose that the width of C is k. Then, the top left point of C
will be (j,m), and the bottom right point will be (j+ k− 1, 1), where
1≤ j ≤ n− k+ 1. It follows that

Cvxm(n) =

n∑
k=1

(n− k+ 1)FWCm(k).

This relationship may be inverted. With the convention that Cvxm(n) =
0 when m≥ 1 and n≤ 0, we obtain that, for m,n≥ 1,

FWCm(n) = Cvxm(n)− 2Cvxm(n− 1) +Cvxm(n− 2).

It is possible to proceed as in the previous section, developing a
related recursion, and thence, a formula. We record the two results.

Proposition 3.1. For all m,n ≥ 1, the number of convex sets of
[n]× [m], which are of full width and intersect each of the m rows, is

FWCvxm(n)

=
1

m+ 1

(
n+m

m

)(
n+m− 1

m

)
− 2

m+ 1

(
n+m− 1

m

)(
n+m− 2

m

)
+

1

m+ 1

(
n+m− 2

m

)(
n+m− 3

m

)
=

(
n+m− 2

m− 1

)2

−
(
n+m− 1

m+ 1

)(
n+m− 3

m− 3

)
.



376 B. BARNETTE, W. NICHOLS AND T. RICHMOND

In the second formula, those binomials with negative lower argument
which occur for m = 1 and m = 2 are to be interpreted as zero; this
accords with [5]. For m ≥ 3, the formula may be seen by factorial
manipulation to be equivalent to the preceding one.

4. The number of convex sets in [n]× [m]. We shall now turn to
counting the number Cvx(n,m) of nonempty convex subsets in [n]×[m].
Theorem 4.4 below gives our formula for Cvx(n,m). While the first
proposition is only slightly more complicated than the corresponding
one (Proposition 2.1) for convex sets which intersect every row, the
inductive proof of the formula for Cvx(n,m) is much more complicated
than that for Cvxm(n).

It is worth noting that, as the “transpose” of a convex set is convex,
we have that Cvx(n,m) = Cvx(m,n). We shall not make use of this
fact in our arguments, but it is handy when performing computations.

Proposition 4.1. Define g(m,u, v) for m≥ 1, u≥ 0 and v ≥ 0 by

g(1, u, v) = 1,

and, for m≥ 2,

g(m,u, v) = g(m− 1, u, 0) +

u∑
r=0

u+v−r∑
s=1

g(m− 1, r, s).

Then:

(a) g(m, 0, 0) = 1 for all m≥ 1.

(b) For all m≥ 1, u≥ 0, v ≥ 0 and n= u+ v ≥ 1, g(m,u, v) is the
number of convex subsets of [n]× [m] whose bottom row is (u, n].

(c) For all m≥ 1 and n≥ 1, g(m+ 1, n, 0) is the number of convex
subsets of [n]× [m].

Proof.

(a) When u = 0 = v, the double sum is empty, so g(m, 0, 0) =
g(m− 1, 0, 0) for all m≥ 2.

(b) We use induction on m. When m = 1, g(m,u, v) = 1, and
C = (u, n]× [1] is the unique such convex subset. Note that, when v = 0,
C is empty.
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Suppose that m≥2 and that the result holds for m−1. We first assert
that g(m−1, u, 0) is the number of convex subsets C of [n]× [m] whose
bottom row is (u, n] and second-from-bottom row is empty. When u= 0,
the bottom row is [n], and there is exactly one such subset, as required.
Now, suppose that u> 0. Then, the inductive hypothesis, applied to the
poset [u]×{2, . . . ,m}, gives that there are g(m− 1, u, 0) possibilities
for the first u columns of C. By convexity, columns u+ 1, . . . , u+ v of
C (if any) must be empty except for the entry in the bottom row. Thus,
the assertion is correct for all u.

We next assert that the double sum enumerates those convex subsets
C of [n]× [m] whose bottom row is (u, n] and second-from-bottom row
is nonempty. The number r of initial empty positions of the second-
from-bottom row of C satisfies 0 ≤ r ≤ u. The number s of points
that follow the r initial empty positions satisfies 1≤ s≤ u+ v− r. By
convexity, columns r + s+ 1, . . . , u+ v of C (if any) must be empty
except for the entry in the bottom row. For each such r, s there are,
by the inductive hypothesis applied to the poset [r+ s]×{2, . . . ,m},
g(m− 1, r, s) possibilities for the first r+ s columns of C. Thus, the
number of convex subsets of [n]×[m] with bottom row (u, n] and second-

from-bottom row nonempty is
∑u

r=0

∑u+v−r
s=1 g(m− 1, r, s). Note that,

when u= n and r = u, there is, as required, an empty inner sum. Thus,
our result holds for m. By induction, it holds for all m≥ 1.

(c) Follows from (b), using the bijection between convex subsets
of [n] × [m + 1] whose bottom row is empty and convex subsets of
[n]× [m]. �

In order to facilitate working with the recursion for g(m,u, v) in a
systematic manner, we introduce two auxiliary quantities.

Let u≥ 0, v ≥ 0. We define h(1, u, v) = 0 = k(1, u), and, for m≥ 2,

h(m,u, v) =

u−1∑
r=0

g(m− 1, r, u+ v− r)

k(m,u) =

u−1∑
r=0

u−r∑
s=1

g(m− 1, r, s).

Note that, since the corresponding sums are empty, we have the
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initial (u= 0) values

h(m, 0, v) = 0 for m≥ 1, v ≥ 0

k(m, 0) = 0 for m≥ 1.

We record some relationships among these quantities. For m ≥ 2,
u≥ 1 and v ≥ 0, we have

h(m,u, v) =

u−2∑
r=0

g(m− 1, r, (u− 1) + (v+ 1)− r)

+ g(m− 1, u− 1, v+ 1),

so

(R1) h(m,u, v) = h(m,u− 1, v+ 1) + g(m− 1, u− 1, v+ 1).

For m≥ 2 and u≥ 1, we have

k(m,u) =

u−2∑
r=0

u−r−1∑
s=1

g(m− 1, r, s) +

u−1∑
r=0

g(m− 1, r, u− r),

so

(R2) k(m,u) = k(m,u− 1) +h(m,u, 0).

For m≥ 2 and u≥ 0, we have by definition that

g(m,u, 0) = g(m− 1, u, 0) +

u∑
r=0

u−r∑
s=1

g(m− 1, r, s).

Since the inner sum is empty when r = u, we have

(R3) g(m,u, 0) = g(m− 1, u, 0) + k(m,u).
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For m≥ 2, u≥ 0 and v ≥ 1, we have

g(m,u, v) = g(m− 1, u, 0)

+

u∑
r=0

u+(v−1)−r∑
s=1

g(m− 1, r, s)

+

u∑
r=0

g(m− 1, r, u+ v− r)

= g(m,u, v− 1)

+

u−1∑
r=0

g(m− 1, r, u+ v− r) + g(m− 1, u, v),

so

(R4) g(m,u, v) = g(m− 1, u, v) + g(m,u, v− 1) +h(m,u, v).

We used (R1)–(R4) recursively to express g(m,u, v), h(m,u, v) and
k(m,u), for small values of u, as sums of “terms” that were functions of
m with “coefficients” that did not depend on m. This led, empirically,
to representations of the form

h(m,u, v) =

u−1∑
r=0

r∑
s=0

hu+v
rs

(
m+ v+ r− 1

v+ r+ s+ 1

)
(F1)

k(m,u) =

u−1∑
r=0

r∑
s=0

gurs

(
m+ r− 1

r+ s+ 1

)
(F2)

g(m,u, v) =

(
m+ v− 1

v

)
(F3)

+

u−1∑
r=0

r∑
s=0

gu+v
rs

(
m+ v+ r

v+ r+ s+ 2

)
.

We observed certain simple relationships that the coefficients satisfied.
We shall now state those relationships and then show that, with the
unique coefficients satisfying those relationships, the formulae (F1)–(F3)
hold. The proof, which, besides the coefficient relationships, uses only
initial conditions for h, k, g and the relations (R1)–(R4), implicitly shows
how the representations were obtained.
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Theorem 4.2. For integers t, r, s, define quantities gtrs and htrs as
follows. Set gtrs = 0 =htrs if (t, r, s) is not in D= {(t, r, s) : 0≤ s≤ r < t}.
For (t, r, s) ∈D, set

gtrs =

{
t− r if s= 0,

gt−1
rs +htrs otherwise,

htrs =

{
1 if s= 0,

htr−1 s + gtr−1 s−1 otherwise.

With these quantities, the formulae (F1)–(F3) hold for all m≥ 1, u≥ 0
and v ≥ 0.

Proof. Let (t, r, s) ∈ D. If s = 0, gtrs and htrs are given explicitly.
Otherwise, if gtrs, h

t
rs are known when t+ r+ s is smaller, the recursive

clauses first give us htrs and then gtrs. Thus, the above conditions
determine unique quantities gtrs and htrs.

We first consider the case m= 1. By definition, h(1, u, v) = 0 = k(1, u)
and g(1, u, v) = 1, as given by (F1), (F2) and (F3), respectively.

We proceed by induction on u. Suppose that u= 0. As previously
observed, h(m, 0, v) = 0 = k(m, 0); thus, (F1) and (F2) follow immedi-
ately. For (F3), we are reduced to showing g(m, 0, v) =

(
m+v−1

v

)
. First,

suppose that v = 0. By Proposition 4.1 (a), g(m, 0, 0) = 1 for all m≥ 1,
so (F3) holds for u= 0 = v.

We continue by induction on m+v. We may assume that m≥ 2 and
v ≥ 1 so that m+v ≥ 3, and that (F3) holds for smaller values of m+v.
By (R4) and the induction hypothesis, we have that

g(m, 0, v) = g(m− 1, 0, v) + g(m, 0, v− 1) +h(m, 0, v)

=

(
m+ v− 2

v

)
+

(
m+ v− 2

v− 1

)
=

(
m+ v− 1

v

)
.

Thus, the inductive step for m+ v holds, and (F1), (F2) and (F3) hold
when u= 0.

Now, suppose that u≥ 1, and that (F1), (F2) and (F3) hold for u−1
for all m ≥ 1 and v ≥ 0. We may assume that m ≥ 2. Then, by (R1)
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and the inductive hypothesis, we have

h(m,u, v) = h(m,u− 1, v+ 1) + g(m− 1, u− 1, v+ 1)

=

u−2∑
r=0

r∑
s=0

hu+v
rs

(
m+ v+ r

v+ r+ s+ 2

)
+

(
m+ v− 1

v+ 1

)

+

u−2∑
r=0

r∑
s=0

gu+v
rs

(
m+ v+ r

v+ r+ s+ 3

)

=

u−1∑
r=1

r−1∑
s=0

hu+v
r−1 s

(
m+ v+ r− 1

v+ r+ s+ 1

)
+

(
m+ v− 1

v+ 1

)

+

u−1∑
r=1

r∑
s=1

gu+v
r−1 s−1

(
m+ v+ r− 1

v+ r+ s+ 1

)
.

When s= r, (u+ v, r− 1, s) is not in D; thus, hu+v
r−1 s = 0. When s= 0,

(u+ v, r− 1, s− 1) is not in D, so gu+v
r−1 s−1 = 0. Thus, we may expand

the ranges of the inner sums, obtaining

h(m,u, v) =

(
m+v−1

v+1

)
+

u−1∑
r=1

r∑
s=0

[hu+v
r−1 s+ gu+v

r−1 s−1]

(
m+v+r−1

v+r+s+1

)

=

(
m+ v− 1

v+ 1

)
+

u−1∑
r=1

r∑
s=0

hu+v
rs

(
m+ v+ r− 1

v+ r+ s+ 1

)

=

u−1∑
r=0

r∑
s=0

hu+v
rs

(
m+ v+ r− 1

v+ r+ s+ 1

)
,

as hu+v
00 = 1. Hence, (F1) holds for u.

Using (R2), the inductive hypothesis and (F1) for u, we have

k(m,u) = k(m,u− 1) +h(m,u, 0)

=

u−2∑
r=0

r∑
s=0

gu−1
rs

(
m+ r− 1

r+ s+ 1

)
+

u−1∑
r=0

r∑
s=0

hurs

(
m+ r− 1

r+ s+ 1

)
.
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Since (u− 1, u− 1, s) is not in D, gu−1
u−1 s = 0, and we have

k(m,u) =

u−1∑
r=0

r∑
s=0

[gu−1
rs +hurs]

(
m+ r− 1

r+ s+ 1

)

=

u−1∑
r=0

r∑
s=0

gurs

(
m+ r− 1

r+ s+ 1

)
.

Thus, (F2) holds for u.

To complete the inductive step for u, it remains to show (F3). We
first consider the case v = 0. We use induction on m and recall that
the case m= 1 is known. Suppose that m≥ 2, and that (F3) holds for
g(m− 1, u, 0). Using (R3), the inductive hypothesis and (F2) for u, we
obtain that

g(m,u, 0) = g(m− 1, u, 0) + k(m,u)

=

(
m− 2

0

)
+

u−1∑
r=0

r∑
s=0

gurs

(
m+ r− 1

r+ s+ 2

)

+

u−1∑
r=0

r∑
s=0

gurs

(
m+ r− 1

r+ s+ 1

)
,

and we readily obtain the required
(
m−1
0

)
+
∑u−1

r=0

∑r
s=0 g

u
rs

(
m+r
r+s+2

)
. By

our induction on m, we thus have that, when v = 0, (F3) holds for u for
all m≥ 1.

We continue by induction on m+v. We may assume that m≥ 2 and
v ≥ 1 so that m+ v ≥ 3, and that (F3) holds for u for smaller values of
m+ v. By (R4), the induction hypothesis and (F1) for u, we have

g(m,u, v)

= g(m− 1, u, v) + g(m,u, v− 1) +h(m,u, v)

=

(
m+ v− 2

v

)
+

u−1∑
r=0

r∑
s=0

gu+v
rs

(
m+ v+ r− 1

v+ r+ s+ 2

)
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+

(
m+ v− 2

v− 1

)
+

u−1∑
r=0

r∑
s=0

gu+v−1
rs

(
m+ v+ r− 1

v+ r+ s+ 1

)

+

u−1∑
r=0

r∑
s=0

hu+v
rs

(
m+ v+ r− 1

v+ r+ s+ 1

)
.

As gu+v−1
rs + hu+v

rs = gu+v
rs , we readily obtain (F3) for m+ v. By the

induction on m+v, (F3) holds for u. This completes the induction step
for u, and we have, by that induction, that (F1), (F2) and (F3) hold
for all m≥ 1, u≥ 0 and v ≥ 0. �

Next, we establish formulae for gtrs and htrs.

Proposition 4.3. For all (t, r, s) ∈D, we have

gtrs =
t− r
t+ 1

(
r

s

)(
t+ s+ 1

s+ 1

)
,

htrs =
(s+ 1)t− rs+ 1

(t+ 1)(t+ s+ 1)

(
r

s

)(
t+ s+ 1

s+ 1

)
.

Proof. Let (t, r, s) ∈D. If s = 0, then the formulae for gtrs and htrs
give the required values of t − r, 1, respectively. We shall argue by
induction on t+ r + s. We may assume that 1 ≤ s ≤ r < t so that
t+ r+ s≥ 4, and that the formulae apply when t+ r+ s is smaller.

We first consider the formula for htrs. Note that (t, r− 1, s− 1) ∈D.
First, suppose that r = s. Then

htrs = htrr = htr−1 r + gtr−1 r−1 = gtr−1 r−1 =
t+ 1− r
t+ 1

(
t+ r

r

)
,

which agrees with the formula. When s < r, we have (t, r− 1, s) ∈D as
well, and thus,

htrs = htr−1 s + gtr−1 s−1

=
(s+ 1)t− (r− 1)s+ 1

(t+ 1)(t+ s+ 1)

(
r− 1

s

)(
t+ s+ 1

s+ 1

)
+
t+ 1− r
t+ 1

(
r− 1

s− 1

)(
t+ s

s

)
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which simplifies to the required

(s+ 1)t− rs+ 1

(t+ 1)(t+ s+ 1)

(
r

s

)(
t+ s+ 1

s+ 1

)
.

Now, we consider the formula for gtrs. When t= r+ 1, we have

gtrs = gr+1
rs = grrs +hr+1

rs = hr+1
rs =

1

r+ 2

(
r

s

)(
r+ s+ 2

s+ 1

)
,

as is given by the formula. When t > r+ 1, we have (t− 1, r, s) ∈ D,
and thus,

gtrs = gt−1
rs +htrs

=
t− 1− r

t

(
r

s

)(
t+ s

s+ 1

)
+

(s+ 1)t− rs+ 1

(t+ 1)(t+ s+ 1)

(
r

s

)(
t+ s+ 1

s+ 1

)
,

which simplifies to the required

t− r
t+ 1

(
r

s

)(
t+ s+ 1

s+ 1

)
.

Thus, by induction on t+ r+ s, gtrs and htrs are given by the respective
formulae for all (t, r, s) ∈D. �

It is now a simple matter to obtain our main result.

Theorem 4.4. For m,n≥ 1, the number of nonempty convex subsets
of [n]× [m] is

Cvx(n,m) =
1

n+ 1

n−1∑
r=0

r∑
s=0

(n− r)
(
r

s

)(
n+ s+ 1

s+ 1

)(
m+ r+ 1

r+ s+ 2

)
.

Proof. From Proposition 4.1 (c), Theorem 4.2 and Proposition 4.3,
the number of convex subsets of [n]× [m] is
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g(m+ 1, n, 0)

=

(
m

0

)
+

n−1∑
r=0

r∑
s=0

gnrs

(
m+ r+ 1

r+ s+ 2

)

= 1 +
1

n+ 1

n−1∑
r=0

r∑
s=0

(n− r)
(
r

s

)(
n+ s+ 1

s+ 1

)(
m+ r+ 1

r+ s+ 2

)
.

Since the above enumeration includes the empty set, our result immedi-
ately follows. �
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