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Abstract LetX be a finite product of finite totally ordered topological spaces.
We show that in the lattice of topologies on X, every convex topology ⌧ on X

has a convex complement ⌧ 0.
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1 Introduction

A topology ⌧ on a partially ordered set (X,) is said to be locally convex if
every point has a neighborhood base of -convex open sets, and convex if ⌧
has a base of convex open sets. It is easy to show (see [8]) that these properties
are equivalent. Let Top(X) be the set of topologies on X ordered by inclusion.
Top(X) is a complete lattice whose greatest element is the discrete topology ⌧

d

and whose least element is the indiscrete topology ⌧

i

. If X is partially ordered,
the collection CvxTop(X) of convex topologies on X is also a complete lattice.

For two topologies ⌧, ⌧

0 in CvxTop(X), their supremum in CvxTop(X)
is the same as their supremum in Top(X), namely, ⌧ _ ⌧

0 = [⌧ [ ⌧

0], where
the brackets indicate the topology generated by the enclosed subbasis. For
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⌧, ⌧

0 2 CvxTop(X), their infimum in Top(X) may not be convex. For ex-
ample, if X = {1, 2} ⇥ {1, 2} with the product order (a, b)  (x, y) if and
only if a  x and b  y, let ⌧1 = [{{(1, 1)}, {(1, 2), (2, 2)}, X}], and ⌧2 =
[{{(1, 1), (1, 2)}, {(2, 2)}, X}]. In Top(X) we have ⌧1 ^ ⌧2 is the non-convex
topology {;, {(1, 1), (1, 2), (2, 2)}, X}. In CvxTop(X), ⌧1 ^ ⌧2 = ⌧

i

. In totally
ordered spaces finite infima agree in Top(X) and CvxTop(X). This corrects
a statement on p. 488 of [10], where the hypothesis of totally ordered was
omitted. The authors are indebted to Hans-Peter Künzi for pointing this out.

A complement of a topology ⌧ in the lattice Top(X) is a topology ⌧

0 2
Top(X) with ⌧ _ ⌧

0 = ⌧

d

and ⌧ ^ ⌧

0 = ⌧

i

. Complementation in the lattice of
topologies has been extensively studied since the 1960s ([11], [13], [17], [18]),
including an interest in topologies from a certain class having complements
from a certain class ([1], [2], [7], [12], [14], [15], [16]). The number of com-
plements of a given topology has received much attention; for a very brief
summary and references, see [3], [10].

We will be concerned with topologies ⌧ on finite sets X, so each point
x 2 X has a smallest neighborhood N(x) =

T
{U : x 2 U,U 2 ⌧} called the

neighborhood core of x (see [5]). Throughout, we will determine topologies ⌧

and ⌧

0 on a finite set by their bases B = {N(x) : x 2 X} and B0 = {N 0(x) :
x 2 X}, respectively, of neighborhood cores.

There is a widely known close connection between topologies on finite sets
and quasiorders (see [5], [6] or the survey [9]). If X is finite, a topology ⌧ on
X gives rise to the specialization quasiorder �, and a quasiorder � on X gives
rise to the specialization topology under the correspondence x � y if and only
if x 2 cl({y}) if and only if y 2 N(x). Thus, on finite sets, the topological
closure operator cl agrees with the order theoretic decreasing hull operator
d(A) = {x 2 X : 9a 2 A, x � a}. The specialization quasiorder provides a
directed graph on X, with a directed edge from x to y if and only if x � y. If
x � y (or equivalently, y 2 N(x)) we say x links to y by ⌧ , and we say A ✓ X

links to set B by ⌧ if there exist a 2 A and b 2 B such that a links to b by
⌧ . We may also apply this terminiology to the topologies ⌧

0 and ⌧ ^ ⌧

0. We
emphasize that “links to” is a directed concept, just as it is when applied to
webpages.

Recall that a directed graph G is strongly connected if for any two vertices
x and y, there is a directed path from x to y. For a digraph G, E(G) represents
the set of edges of G.

The following observation will be useful in showing that X is the only
nonempty set in X which is simultaneously ⌧ -open and ⌧

0-open, that is, in
showing that ⌧ ^ ⌧

0 = ⌧

i

.

Proposition 1 Suppose ⌧ and ⌧

0
are two topologies on a finite set X with

corresponding digraphs G and G

0
of their specialization quasiorders. If the

union digraph G [G

0
is strongly connected, then ⌧ ^ ⌧

0 = ⌧

i

.

Proof: Suppose G [G

0 is strongly connected and U is a nonempty ⌧ ^ ⌧

0-
open set, with x 2 U . Now for y 2 X, there exists a sequence of edges in E(G)
or E(G0) from x = x1 to x2 to x3, and so on, to x

n

= y. Now (x
i

, x

i+1) 2
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E(G [ G

0) implies x

i+1 2 N(x
i

) or x

i+1 2 N

0(x
i

) so that x

i+1 2 N

⌧^⌧

0(x
i

).
Thus, every ⌧ ^⌧

0-open set containing x

i

must contain x

i+1, and in particular,
U must contain y. ut

The totally ordered set X = {1, 2, . . . , n} with the natural ordering 1 <

2 < · · · < n will be denoted by n.
We now describe the algorithm given in [10] to produce a convex comple-

ment for any convex topology ⌧ on a finite totally ordered set X = n. We say
that the topology ⌧ on n breaks to the right of j if there is some neighborhood
core N(k) 2 ⌧ of form N(k) = [a, j] = {i : a  i  j}. Similarly, ⌧ breaks

to the left of j if j is the least element of some neighborhood core N(k). A
convex complement ⌧ 0 of ⌧ can be constructed by taking N

0(j) = [j⇤, j⇤] where
j⇤ (j⇤) is the largest number less (smallest number greater) than or equal to j

at which ⌧ does not break to the left (right), or the endpoint 1 (n) if no such
number exists. It is shown in [10] that if j is not the left endpoint 1, then ⌧

0

breaks to the left of j if and only if ⌧ does not, and dually. In particular, at
each j which is not an endpoint 1 or n, exactly one of N(x) or N 0(x) extends to
the right of j and exactly one extends to the left of j. This construction guar-
antees that from any non-endpoint j, we have {j� 1, j, j+1} ✓ N(j)[N

0(j),
so any ⌧ ^ ⌧

0 open set containing j contains j � 1 and j + 1. That is, the ⌧ -
and ⌧

0-neighborhood cores of j provide links to the left and to the right of
j. Now repeating this argument for j � 1 and j + 1, we find that any ⌧ ^ ⌧

0

neighborhood of j contains {j�2, j�1, j, j+1, j+2}. Iterating until we reach
the endpoints, we see that the only nonempty ⌧ ^ ⌧

0 open set is n.
In the totally ordered case, from a point j, it was enough to consider links

and breaks to j�1 and j+1 since these two points provided the only directions
in which we could expand convexly from j. In a product of totally ordered sets,
{j, x} is convex for any x such that x is noncomparable to j, as well as any
adjacent comparable x, making it more di�cult to determine when links are
needed (or prohibited). Example 7 explores this direction further.

2 Products of Two Totally Ordered Spaces

We start by considering the product of two totally ordered spaces. All products
will carry the product (i.e., componentwise) order. To find a convex comple-
ment ⌧ 0 of a convex topology ⌧ on m⇥ n, we will string together the convex
complements of the totally ordered rows R

j

= m⇥{j} viewed as subspaces,
with appropriate connections at the endpoints providing enough links between
rows to insure that the link graph is strongly connected.

Theorem 1 Any convex topology ⌧ on a product X = m ⇥ n of two totally

ordered sets admits a convex complement ⌧

0
.

The remainder of this section is devoted to the proof of this, which is by
way of a constructive algorithm for the complement ⌧

0. We assume ⌧ is a
convex topology on m⇥ n.
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2.1 Linear Work

Each row R

j

(j = 1, . . . n), with the subspace topology ⌧

j

⌘ ⌧ |
Rj is a convex

totally ordered space isomorphic to m. Let l
j

= (1, j) be the left endpoint of
row R

j

, and let r
j

= (m, j) be the right endpoint of R
j

. Construct the convex
complement ⌧⇤

j

of ⌧
j

using the algorithm from [10], to obtain ⌧

⇤
j

-neighborhoods
N

⇤(x) ✓ R

j

for each x 2 R

j

. Now B⇤ = {N⇤(x) : x 2 X = R1 [ · · · [ R

n

} is
a basis for a convex topology ⌧

⇤ on X. Now in ⌧ ^ ⌧

⇤, each point x
j

2 R

j

is
connected to every other point of its row R

j

by a series of links by ⌧ or ⌧⇤. Our
algorithm will modify the topology ⌧

⇤ by replacing some of the neighborhood
cores containing endpoints l

j

or r

j

which are not realized as intersections of
other open sets by a larger convex union of elements of B⇤. Note that this
procedure will produce a (coarser) convex topology ⌧

0 on X. Our strategy will
be to preserve the ⌧

⇤ links and breaks within each row and add enough ⌧

0

links between rows to the existing ⌧ links between rows to make X = m ⇥ n
strongly connected in the directed graph whose vertices are the points of X
and the edges are the pairs {x, y} for which x is linked to y by ⌧ or by ⌧

0.

2.2 How to Link

If we wish to convexly extend N

⇤(l
j

) downward to contain r

j�1 and other
points, then we must also extend each N

⇤(y) containing l

j

, for otherwise,
the intersection of an “extended” neighborhood of l

j

with one that was not
extended would show that the neighborhood core of l

j

was not extended. This
simple observation is an important step used in [4] to obtain a recursive formula
for the number of convex topologies on an n-element totally ordered space.
Rather than extending each N

⇤(y) containing l

j

downward, in order to leave
the ⌧

⇤-breaks within row R

j

undisturbed, we will extend only the largest one
G(l

j

) = max{N⇤(y) : l
j

2 N

⇤(y)}. That is, if we wish to link row R

j

to a lower
row, we will only extend the ⌧

0-neighborhood cores for those points y 2 R

j

with N

⇤(y) = G(l
j

). Dually, we take G(r
j

) = max{N⇤(y) : r
j

2 N

⇤(y)}. For
x

j

2 {l
j

, r

j

}, note thatG(x
j

) ✓ R

j

, and by convexity,G(x
j

) =
S
{N⇤(y) : x

j

2
N

⇤(y)}. Combining the concepts, we see that introducing a link downward
from R

j

will involve extending G(l
j

) to include G(r
j�1), and possibly more.

The basic linking mechanism is illustrated in Example 1 below. To provide a
⌧

0-link down from R

j

to R

j�1, for all x 2 R

j

with N

⇤(x) = G(l
j

) we take
N

0(x) to be G(l
j

) [ G(r
j�1). To provide a link up from R

j

to R

j+1, for all
x 2 R

j

with N

⇤(x) = G(r
j

) we take N

0(x) to be G(r
j

) [ G(l
j+1). We take

N

0(x) = N

⇤(x) for all other points x whose ⌧

⇤-neighborhood core was not
expanded by linking.

Example 1 (Basic linking.) A convex topology ⌧ on 5 ⇥ 3 is shown in Fig-
ure 1. Note that ⌧ links R2 up to R3 since there are points of R2 whose
⌧ -neighborhood cores extends to R3, and ⌧ provides no other links from one
row to another. The topology ⌧

⇤ is shown, with G(l3), G(l2), G(r1), and G(r2)
shown in bold. To provide a sequence of links between all rows, it su�ces to add
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⌧ ⌧⇤ ⌧ 0

Fig. 1 Linking Example

⌧ ⌧⇤ ⌧ 0

Fig. 2 Multiple Row Linking

⌧

0-links from R3 down to R2, from R2 down to R1, and from R1 up to R2. To
link R3 down to R2, we expand G(l3) to includeG(r2). Specifically, x = (3, 3) is
the only point in R3 with N

⇤(x) = G(l3), so we take N 0((3, 3)) = G(l3)[G(r2)
and N

0(x) = N

⇤(x) for all x 2 R3 \ {(3, 3)}. To link R2 down to R1 and R1

up to R2, in transforming from ⌧

⇤ to ⌧

0 we expand G(l2) to include G(r1) and
expand G(r1) to include G(l2); that is, we replace both G(l2) and G(r1) by
their union. Since G(l2) = N

⇤((2, 2)) = N

⇤((3, 2)) and G(r1) = N

⇤((4, 1)), we
take N

0((2, 2)) = N

0((3, 2)) = N

0((4, 1)) = G(l2) [G(r1), and N

0(x) = N

⇤(x)
for all other points x 2 R2 [R1.

Example 2 (Multiple-row linking.) The topology ⌧ shown in Figure 2 links up
from R3 to R6. The techniques below will show that we will want ⌧

0 to link
every row down to the bottom, rows R1 and R2 up to R3, and rows R4 and R5

up to R6. Note that for rows R3, R4, and R5, the largest ⌧⇤ neighborhoods used
for linking are entire rows. That is, these rows satisfy the following equivalent
conditions: (a) l

j

2 G(r
j

), (b) r
j

2 G(l
j

), (c) G(r
j

) = R

j

, (d) G(l
j

) = R

j

, (e)
G(r

j

) = G(l
j

), (f) R
j

is a neighborhood core in ⌧

⇤
j

.

Now linking R6 down to R5 would replace G(l6) by G(l6)[G(r5) = G(l6)[R5.
Since G(l6) = {(1, 6)} is the ⌧

⇤-neighborhood core of only (1, 6), we take
N

0((1, 6)) = G(l6) [ R5. But we wish to continue to link down to R4, so
N

0((1, 6)) should be G(l6) [ R5 [G(r4) = G(l6) [ R5 [ R4. Similarly, linking
down to R3 requires adjoining G(r3) = R3. Now linking down to R2 adjoins
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G(r2) = {(2, 2), (3, 2)}, which is not the entire row. Thus, N 0((1, 6)) = G(l6)[
R5 [R4 [R3 [G(r2), and R6 links down to R2 with a single ⌧

0-neighborhood
core. To link R6 on down to R1, we require one more link from R2 down to
R1, accomplished by taking G(l2)[G(r1) as the ⌧ 0-neighborhood core of every
y 2 R2 with N

⇤(y) = G(l2). That is, we take N

0((1, 2)) = G(l2) [G(r1). This
illustrates multi-row linking.

To complete the example, since R1 should link up to R2, we take N 0(3, 1) =
G(l2)[G(r1) = N

0((1, 2)). Now R2 and R3 need to be linked in both directions,
and since R3 already ⌧ -links up, we do not want R2 or R3 to ⌧

0-link up, so
we take N

0((3, 2)) = N

0((1, 3)) = N

0((2, 3)) = N

0((3, 3)) = G(l3) [ G(r2) =
{(2, 2), (3, 2), (1, 3), (2, 3), (3, 3)}. Also, R4 and R5 need to be linked in both
directions. This is accomplished by taking N

0(2, 4) = N

0(3, 5) = N

0(1, 6) =
G(l6) [R5 [R4 [R3 [G(r2).

2.3 When to Link and Break

If x
j

2 R

j

, then the breaks within that row provided by N

⇤(x
j

) ✓ R

j

guar-
antee that N(x

j

) \ N

⇤(x
j

) \ R

j

= {x
j

}. We will define ⌧

0 to maintain the
⌧

⇤-breaks between elements on a row. So, if N(x
j

) \ N

0(x
j

) 6= {x
j

}, the
points of intersection would have to occur outside R

j

. Our construction will
prohibit that by insuring that N

0(x
j

) “breaks” before the first rows—above
and below—that N(x

j

) links out to. If N(x
j

) links row R

j

down, we define
the downward link/break interval associated with x

j

2 R

j

to be (k, j], where
k is the largest integer less than j for which N(x

j

) links down to R

k

. The
upward link/break interval [j, i) associated with x

j

2 R

j

is defined dually.
Link/break intervals are directional, half-open intervals. If (k, j] and [j, i) are
the downward and upward link/break intervals associated with x

j

2 R

j

, then
requiring that N 0(x

j

) ✓
S
{R

z

: z 2 (k, i)} = R

k+1[ · · ·[R

i�1 will insure that
N(x

j

) \N

0(x
j

) = {x
j

} (and furthermore, that N(x
j

) is not ⌧ 0-open unless it
is X and that N 0(x

j

) is not ⌧ -open unless it is X).
For each j 2 {1, . . . , n}, we construct the link/break intervals for each

x

j

2 R

j

for which N(x
j

) links out of R
j

. Note that if x
j

2 R

j

, x

k

2 R

k

, j 6= k

and N = N(x
j

) = N(x
k

), then N may generate up to two link/break intervals
as the neighborhood core of x

j

and up to two more as the neighborhood core of
x

k

(and up to two for each other point x
i

from a di↵erent row withN(x
i

) = N).
Some link/break intervals associated with ⌧ -neighborhood cores are shown

in Figure 3. If (k, j] is a downward link/break interval, we will say “k is a c” and
“j is a

s
”, and will interpret the symbols cand s

as indices k and j, respectively,
of rows containing the corresponding endpoints of a downward link/break

interval (k, j]. Dually, we interpret
c
and s as row indices corresponding to

endpoints of upward link/break intervals. This allows us to use phrases such

as “ s� j ”. Furthermore, by x 2
s
we mean x 2 (k, j] for some downward

link/break interval, and if the exact link/break interval is needed, we may

write x 2
sc= (k, j].
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Fig. 3 Link/Break intervals

Given a convex topology ⌧ on a product X = m ⇥ n of totally ordered
sets, record the link/break intervals. Now for each j with 1  j  n we define
an interval (j�, j+) of rows to be ⌧

0-linked.
Given j, take

j

+ =

(
the smallest integer above the first s � j if 9 s � j

n+ 1 otherwise

j� =

8
><

>:

the greatest c
< j if j 2 any

s
the greatest c below the first

s
< j if j 62 any

s
0 otherwise.

Now we ⌧

0 link each row R

j

to all the rows in (j�, j+) as described in
Section 2.2. To show that ⌧ 0 is indeed a complement of ⌧ , there remain three
things to check:

(a) Intersections of ⌧ 0 sets do not introduce new ⌧

0-sets or ⌧ 0-breaks.
(b) Enough ⌧

0 breaks are provided to guarantee N(x)\N

0(x) = {x} for every
x 2 X.

(c) Enough ⌧

0 links are provided to make X strongly ⌧ ^ ⌧

0-connected (see
Proposition 1) to insure X is the only nonempty set open in both ⌧ and
⌧

0.
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(a) By the construction, eachN

0(x) preserves the ⌧⇤ links and breaks within
each row it intersects, so we need only check intersections which intersect more
than one row. Thus, to show that intersections of ⌧ 0 neighborhoods defined
by the algorithm do not produce new unwanted ⌧

0 open sets which might be
⌧ -open, we will show that if (j�, j+) \ (k�, k+) is nonempty, then (j�, j+) \
(k�, k+) = (r�, r+) for some r. If one of (j�, j+) is contained in the other,
this is clear, so without loss of generality we may assume k� < j� < k

+
< j

+

so (j�, j+) \ (k�, k+) = (j�, k+) 6= ;. Let r = k

+ � 1. From the definition of

k

+, we have r is a s , r+ = k

+, and j� < r < j (or else j

+ = k

+). Consider
the three ways j� may have been defined. If j� = 0, then we cannot have

k� < j�. If j 2 some
sc= (y, x] and j� was the first cbelow j, then r 2 (y, x]

and r� = j�. If j is not in any
s
, then j� is the first cbelow the first

s
below

j. But j� < r < j implies r� = j�, whether r is in some
s
or not. In both

allowed cases, we have r

+ = k

+ and r� = j�, so the intersection (j�, k+) is
already an interval of form (r�, r+) generated by the algorithm.

(b) For each s , the construction provides a ⌧

0 break immediately above,

and for each
s
, the construction provides a ⌧

0 break before reaching the c at
the other end of that link/break interval. This guarantees that enough breaks
are provided.

Before proving (c), we mention the simplest case of (c): No ⌧ 0-neighborhood
core N

0 6= X is ⌧ -open. We have seen one justification for this in the first
paragraph of Section 2.3. We give a second justification for this. If N 0 has a
mid-row break, then this break was a ⌧

⇤ break, and thus was not a ⌧ break.
Thus, ⌧ reaches across the mid-row break and thus out of N 0, so N

0 was not ⌧ -
open. If N 0 has no mid-row breaks, then the top (bottom) break occurs above
(below) a row R

j

which had to satisfy the equivalent conditions: (a) l
j

2 G(r
j

),
(b) r

j

2 G(l
j

), (c) G(r
j

) = R

j

, (d) G(l
j

) = R

j

, (e) G(r
j

) = G(l
j

), (f) R
j

is a
neighborhood core in ⌧

⇤
j

. Now if the top row R

j

of N 0 is not R
n

, then R

j

had

a s , so ⌧ linked up from R

j

out of N 0, so N

0 is not ⌧ -open. If the top row of
N

0 is R
n

and the bottom row of N 0 is R
k

, so that N 0 = R

n

[R

n�1 [ · · ·[R

k

,

then there had to be a cat k� 1, so ⌧ linked from somewhere above R

k

down
to R

k�1, again showing that ⌧ linked out of N 0, so N

0 is not ⌧ -open. Thus, no
single N

0(x) 6= X is ⌧ -open.
Item (c) shows more: not only is no properN 0(x) ⌧ -open, no union

S
x2I

N

0(x)
is ⌧ -open unless it is X. We need the following two Lemmas to show (c).

Lemma 1 Every row R

j

(1  j < n) links upward and every row R

j

is linked

to the top row by a sequence of ⌧ - or ⌧

0
-links.

Proof: If the first s� j is > j, then the definition of j+ shows that R
j

has

a ⌧

0-link up. If the first s� j is = j, then R

j

has a ⌧ -link up. Iterating the
upward links, we will eventually reach the top. ut
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Lemma 2 Every row links down and is linked to from the top by a sequence

of ⌧ - or ⌧

0
-links.

Proof: We proceed by induction from the top row downward. Clearly the
top row is linked to from the top. If the top row R

n

does not ⌧ -link down then

n� would be the first c below the first
s
below n—say this

s
occurs at row

x—which insures that n� < x  n � 1 so R

n

⌧

0-links down (to R

n�1) and
R

n�1 is linked to from the top.
Now suppose rows n, n�1, . . . , j+1 link down and rows n, n�1, . . . , j+1, j

are linked to from the top by a sequence of ⌧ - and ⌧

0-links (j < n).
If j� < j � 1, then R

j

⌧

0-links down to row j � 1, and since R

j

was linked
to from the top, with this one extra ⌧

0-link, R
j�1 is linked to from the top.

If j� = j � 1, then there is a link/break interval with its c on row j � 1
The other endpoint of the link/break interval had to occur at y � j. Now y

is reachable from the top by a sequence of links by the induction hypothesis;
adding the ⌧ -link generating the link/break interval (j�1, y] shows that j�1 is
reachable from the top. Furthermore, from Lemma 1, recall that row j reaches
to the top. Since j � 1 is reachable from the top, there is a sequence of links
from row j to the top row and on down to row j � 1, and thus row j links
down. Now the result follows by mathematical induction. ut

Now we are ready to show that the digraph G[G

0 (as described in Propo-
sition 1) is strongly connected. Pick arbitrary x 2 R

j

and y 2 R

k

from X.
Now the links and breaks from the linear work link x to every point on R

j

and y to every point on R

k

. If j = k, we are done. Otherwise, applying the
lemmas, R

j

links up to the top and the top links down to R

k

by sequences of
⌧ - or ⌧ 0-links providing a sequence of links from x to y.

This completes the proof.

3 Examples

Example 3 If ⌧ and ⌧

0 are complementary topologies on X and A ✓ X, in gen-
eral it is not true that the subspace topologies ⌧ |

A

and ⌧

0|
A

are complementary
topologies on A. The particular complements constructed by our algorithms
are no exception. For X = 3⇥ 2, consider the topology ⌧ shown in Figure 4.
Also shown are ⌧⇤, ⌧ 0, and the subspaces of ⌧ |

A

and ⌧

0|
A

where A = {2, 3}⇥2.
Since R1 (or R2) is a proper nonempty set open in both ⌧ |

A

and ⌧

0|
A

, these
two topologies on A are not complements.

Example 4 If X = m ⇥ n =
S
{R

j

: 1  j  n} and the ⌧ -neighborhood
core N(x

j

) of each point x

j

2 R

j

satisfies N(x
j

) ✓ R

j

, then ⌧ provides no
links between rows. In this case, consider the totally ordered space (X, ⌧,

lex

)
where 

lex

is the (reverse) lexicographic order on X = m ⇥ n defined by
(i, j) 

lex

(k, l) if and only if j < l or j = l and i  k. Thus, 
lex

simply
strings the rows of X together linearly. In this case, the complement ⌧

0 of
X = m ⇥ n produced by the algorithm is the complement of the totally
ordered space (X, ⌧,

lex

) produced by the algorithm of [10].
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⌧ ⌧⇤ ⌧ 0 ⌧ |A ⌧ 0|A

Fig. 4 The subspace of a complement is not a complement of the subspace.

⌧ ⌧⇤ ⌧ 0

Fig. 5 An example

Example 5 Figure 5 below shows a convex topology ⌧ on 3⇥10, the associated
link/break intervals, the intermediate topology ⌧

⇤, and the convex complement
⌧

0 generated by the algorithm.

Example 6 Let ⌧ be the convex topology on 3 ⇥ 6 shown in Figure 2. The
topology ⌧

0 shown there is the convex complement of ⌧ generated by our algo-
rithm. We may apply the algorithm to ⌧

0 to find ⌧

00. The link/break intervals
from ⌧

0, the intermediate space ⌧

0⇤, and ⌧

00 are shown in Figure 6.
Note that ⌧

00 6= ⌧ . However, further analysis would show that for this
example, ⌧ 0 = ⌧

000.

In the case of linearly ordered spaces, it is shown in [10] that using the
algorithm introduced there to generate the complements, it always holds that
⌧

0 = ⌧

000. It remains to be seen whether this always holds for the complements
of topologies on products of totally ordered spaces produced by the current
algorithm.

Of course, a convex topology may have many convex complements, so there
may be other algorithms which generate (possibly di↵erent) convex comple-
ments. For example, the up/down dual of algorithm given above would also
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⌧ 0⇤ ⌧ 00

Fig. 6 Iterating the algorithm for ⌧ 0 of Figure 2

generate a convex complement. Specifically, the dual algorithm would be as
the original except that for each j we take

j� =

(
the greatest integer below the first

s
 j if 9

s
 j

0 otherwise

j

+ =

8
><

>:

the least
c

> j if j 2 any s
the least

c
above the first s

> j if j 62 any s
n+ 1 otherwise.

If ⌧ is the topology on 3 ⇥ 6 shown in Figure 2, the dual algorithm pro-
duces the convex complement ⌧

8 shown in Figure 7. Compare this with the
complement ⌧ 0 from Figure 2.

Example 7 Here we depart from our algorithm and illustrate some primitive
techniques which may yield a convex complement for simple convex topologies
on a product m⇥n. For such a topology ⌧ , the strategy is based on indicating
the required breaks which the complement ⌧

0 must add and the permitted
links in the directions of the “nearest neighbors” for each point. In the grid
m ⇥ n, a point x has eight “nearest neighbors” which are north, south, east,
west, northeast, northwest, southeast, and southwest of it. However, if the
point x

ne

northeast of x is included in a convex set N containing x, then the
points x

n

and x

e

north and east (respectively) of xmust be included. But, then
x

ne

is north of x
e

(and east of x
n

), so linking and breaking in the northeast
direction can always be obtained from linking and breaking in the north and
east directions. Thus, we need not consider links and breaks in the northeast,
and dually southwest, directions. This gives six nearest neighbors to consider.
We draw a hexagon around each point of X with a solid edge indicating a
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Fig. 7 The complement ⌧ 8 of ⌧ in Figure 2 from the dual algorithm

required ⌧

0-break in that direction and a dotted edge indicating a permitted
⌧

0-link in that direction, as seen in Figure 8. Then by inspection, we draw in
minimal ⌧ 0 neighborhoods which provide the indicated breaks. However, there
is no unique way to accomplish this. Two possible ways, ⌧ 0 and ⌧

⇠ are shown
in Figure 8. Such ambiguity in how to complete the algorithm indicates that

⌧ Breaks ⌧ 0 ⌧⇠

Fig. 8 A primitive approach

this technique has limitations, but there are other more serious limitations. In
the topology ⌧ shown, the only diagonal breaks needed were at 45� angles and
we only considered neighbors at 45k� angles (k 2 N). However, breaks in other
directions may be needed, and links in other directions may be permitted. Had
the neighborhood core of (1, 3) been {(1, 3), (3, 2)} instead of {(1, 3), (2, 2)},
we would have to consider breaks (and possible links) in the direction from
(1, 3) to (3, 2). In larger spaces, this problem could make this primitive strategy
ine↵ective.

4 Higher Dimensional Products

The techniques presented here will apply to higher dimensional products of
totally ordered spaces. The proof of the two-factor case only required linearity
in the second factor, in order to define the link/break intervals and the intervals
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(j�, j+). All that was required of the first factor was an algorithm to produce
a convex complement with minimum and maximum elements r

i

and l

i

and
good neighborhoods G(r

i

) and G(l
i

) to expand from.

Theorem 2 Any convex topology ⌧ on a finite product of finite totally ordered

spaces m1, . . . ,mn admits a convex complement.

Proof: We proceed inductively on the number n of totally ordered spaces
mi. The algorithms of [10] and Theorem 1 establish the result for n = 1 and
n = 2. Having established the result for n = k, observe that X = m1 ⇥
· · ·⇥mk ⇥mk+1 with topology ⌧ may be partitioned into blocks (or “rows”)
R

j

= m1 ⇥ · · · ⇥ mk ⇥{j} for j 2 mk+1. Each such block R

j

, viewed as
a subspace of X, is (homeomorphic and order isomorphic to) a product of
k totally ordered spaces with a convex topology, and we may find a convex
complement ⌧

⇤
j

for each block R

j

, and we take ⌧

⇤ = [
S
{⌧⇤

j

: j 2 mk+1}].
As above, we take l

j

and r

j

to be the minimum and maximum elements of
R

j

and for x

j

2 {l
j

, r

j

} we take G(x
j

) =
S
{N⇤(y) ✓ R

j

: x

j

2 N

⇤(y)}.
Link/break intervals in the totally ordered factor mk+1 are defined as above.
For each j 2 mk+1, apply the linking techniques of the algorithms above to
link the blocks {R

i

: i 2 (j�, j+)} to each other through downward links
from neighborhoods G(l

i

) of minimal points l

i

in R

i

and upward links from
neighborhoods G(r

i

) of maximum points r

i

of R

i

. The arguments for the
two-factor case above apply to show that this construction yields a convex
complement of X = m1 ⇥ · · ·⇥mk+1. ut

Figure 9 suggests the required linking in the product of three totally or-
dered spaces.

Fig. 9 Partition of a product into lower dimensional blocks, with linking between blocks.
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