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Abstract

If a1, a2, . . . , an are nonnegative real numbers and fj(x) =
√

aj + x,
then f1 ◦ f2 ◦ · · · ◦ fn(0) is a nested radical with terms a1, . . . , an. If
it exists, the limit as n → ∞ of such an expression is a continued
radical. We consider the set of real numbers S(M) representable as a
continued radical whose terms a1, a2, . . . are all from a finite set M .
We give conditions on the set M for S(M) to be (a) an interval, and
(b) homeomorphic to the Cantor set.

1 Introduction

We will consider nested radicals of form√
a1 +

√
a2 +

√
a3 + · · · + √

an

which we will denote by Sn =
√

a1, a2, a3, . . . , an. The limit

lim
n→∞

Sn =

√
a1 +

√
a2 +

√
a3 + · · ·, denoted by

√
a1, a2, a3, . . . ,

is called a continued radical.
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Continued radicals of this form are studied in [5], [7], and [2], and briefly
in [9] and [3]. Ramanujan considered several continued radicals (see [2]) and
showed that

3 =

√
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · ·.

Continued radicals can be related to solutions of certain polynomial or radical
equations (see [2] and [1]). Laugwitz [5] studies chain operations or iterated
function systems of form limn→∞(f1 ◦ f2 ◦ · · · fn)(x). Observe that infinite
series, infinite products, continued fractions, and continued radicals may all
be so represented. Much work has been done on convergence criteria for
continued radicals (see [1], [7], and [5]). Our emphasis is on the forms of the
sets S(M) of real numbers which are representable as a continued radical
whose terms a1, a2, . . . are all from a finite set M . The analogous problem
for continued fractions has been considered in [6] (see also [4]).

Perhaps the most familiar continued radical is
√

1, 1, 1, . . ., whose value

is the golden ratio ϕ = 1+
√

5
2

≈ 1.61803. The popular verification of this
relies on the self-similarity of the continued radical: If S =

√
1, 1, 1, . . ., then

S2 = 1 + S, and S must be the positive root of this quadratic equation.
This argument has overlooked the serious issue of convergence. With similar
careless regard for convergence, one might incorrectly conclude that

T =

√
1 −

√
1 −

√
1 −

√
1 − · · ·

is the positive solution of T 2 = 1−T and thus T = −1+
√

5
2

≈ .61803. However,
the partial expressions

√
1,

√
1 −

√
1,

√
1 −

√
1 −

√
1,

√
1 −

√
1 −

√
1 −

√
1, . . .

alternate 1, 0, 1, 0, . . . , and thus do not converge.
To guarantee that each partial expression Sn of a continued radical

√
a1, a2, a3, . . .

is defined, each term ai must be nonnegative. We will restrict our attention to
continued radicals

√
a1, a2, a3, . . . whose terms ai are whole numbers, though

we note that the fundamental result below holds for any nonnegative terms.

Proposition 1.1 (a) If ai ≥ bi ≥ 0 for all i ∈ N, then
√

a1, a2, . . . , ak ≥√
b1, b2, . . . , bk for all k ∈ N.
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(b) If ai ≥ 0 for i ∈ N, then the sequence
√

a1,
√

a1, a2,
√

a1, a2, a3, . . . of
partial expressions of the continued radical

√
a1, a2, a3, . . . is an increas-

ing sequence.

Part (a) follows from a direct calculation, using the fact that f(x) =
√

x
is an increasing function. Part (b) follows from part (a).

Observe that the converse of Part (a) does not hold. If (ai)
∞
i=1 = (8, 4, 0, 0,

0, . . . ) and (bi)
∞
i=1 = (6, 9, 0, 0, 0, . . . ), then

√
a1, a2, . . . , ak ≥

√
b1, b2, . . . , bk

for all k ∈ N, but a2 �≥ b2.

Proposition 1.2 If the sequence (ai)
∞
i=1 of nonnegative numbers is bounded

above, then
√

a1, a2, a3, . . . converges.

Proof. Suppose (ai)
∞
i=1 is bounded above by M ≥ 2. We will show that the

increasing sequence S1 =
√

a1, S2 =
√

a1, a2, S3 =
√

a1, a2, a3, . . . of partial
expressions is bounded above by M2. By Proposition 1.1 (a),

Sk =
√

a1, a2, . . . , ak ≤
√

M, M, . . . , M = qk

where the number of Ms in the latter nested radical is k. Now S1 < q1 =√
M < M2. Suppose qk < M2. Then qk+1 =

√
M + qk <

√
M + M2 <√

2M2 = M
√

2 < M2. Thus, (qk)
∞
k=1 and therefore (Sk)

∞
k=1 is bounded above

by M2, as needed.

The converse of the proposition fails. One can show, for example, that√
1, 2, 3, 4, . . . converges even though (1, 2, 3, 4, . . . ) is not bounded. Sizer [7]

gives necessary and sufficient conditions on the terms of a continued radical
to guarantee convergence. He shows that

√
a1, a2, a3, . . . converges if and only

if the set { 2i√ai : i ∈ N} is bounded (see also Laugwitz [5]).
Proposition 1.2 shows that for any nonnegative number n,

√
n, n, n, . . .

converges. We will denote the value of
√

n, n, n, . . . by ϕn. Now ϕ2
n = n+ϕn

and if n ∈ N, the quadratic formula shows that

√
n, n, n, . . . = ϕn =

1 +
√

4n + 1

2
.

It is easy to verify that ϕn is a nonzero integer if and only if n is twice a
triangular number. Specifically, ϕn = k ∈ N if and only if n = k(k − 1) =
2Tk−1 for some integer k ≥ 2. Recall that a triangular number is an integer
of form Tm = 1 + 2 + · · · + m = m(m+1)

2
=

(
m+1

2

)
for m ∈ N.
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We will consider continued radicals whose terms all come from a finite
set M = {m1, m2, . . . , mp} of integral values. We will determine which such
sets M permit us to represent all real numbers from an interval and which
such sets M leave gaps in the set of numbers representable. We will consider
uniqueness of representation. First we consider sets M of nonnegative terms
in Section 2. Allowing zero as a term complicates matters, and this case
is considered in Section 3. In Section 4 we consider the interesting pattern
of gaps in the numbers representable by continued radicals whose terms all
come from a two-element set {m1, m2} ⊆ N.

2 Continued radicals with nonzero terms

Let us consider continued radicals
√

a1, a2, a3, . . . whose terms ai come from
a set M = {m1, m2, . . . , mp} ⊆ N where 0 < m1 < m2 < · · · < mp. We
will be interested in sets M of “term values” which allow all points of a
nondegenerate interval to be represented. To insure that no gaps occur in
the set of values representable as a continued radical

√
a1, a2, a3, . . . with

terms from M , it is necessary that the largest value representable with a1 =
mi equal or exceed the smallest value representable with a1 = mi+1 (for
i = 1, . . . , p − 1). That is, it is necessary that

√
mi, mp, mp, mp, . . . ≥

√
mi+1, m1, m1, m1, . . . ∀i ∈ {1, . . . , p − 1},

or equivalently, that√
mi + ϕmp ≥

√
mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}.

In fact, this condition will be necessary and sufficient, as we will see in
Theorem 2.2. First, we need a lemma.

Lemma 2.1 Suppose (an)∞n=1 and (rn)∞n=1 are sequences of real numbers with
an ≥ 1 ∀n ∈ N and rn ≥ 2 ∀n ∈ N, and for k ∈ N, define

hk(x) =
r1

√
a1 +

r2

√
a2 +

r3
√

a3 + · · · + rk
√

ak + x

=

(
a1 +

(
a2 +

(
a3 + · · · + (ak + x)

1
rk · · ·

) 1
r3

) 1
r2

) 1
r1

.
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Then the derivative of hk over [0,∞) is positive and bounded above by 2−k.
That is, 0 < h′

k(c) ≤ 2−k for all c ≥ 0.

Proof. Applying the chain rule for differentiation and recalling that an ≥ 1
for all n ∈ N, we find that

h′
k(c) =

1

r1

(w1)
1
r1

−1 · 1

r2

(w2)
1
r2

−1 · 1

r3

(w3)
1
r3

−1 · · · 1

rk

(wk)
1

rk
−1

where wn ≥ 1 for n = 1, . . . , k. Observing that rn ≥ 2 for n = 1, . . . , k, we
see that each 1

rn
− 1 is negative, so with pn = −( 1

rn
− 1) > 0, we have

0 < h′
k(c) =

1

r1r2r3 · · · rk(w1)p1(w2)p2 · · · (wk)pk
≤ 1

r1r2r3 · · · rk

≤ 1

2k
= 2−k.

Theorem 2.2 Suppose M = {m1, m2, . . . , mp} ⊆ N where 0 < m1 < m2 <
· · · < mp and√

mi + ϕmp ≥
√

mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}.

Then the set of numbers representable as a continued radical
√

a1, a2, a3, . . .
with terms ai ∈ M is the interval [ϕm1 , ϕmp ].

Proof. We present an algorithm to construct a representation
√

a1, a2, a3, . . .
(ai ∈ M ∀i ∈ N) for any given b ∈ [ϕm1 , ϕmp ]. Suppose b ∈ [ϕm1 , ϕmp ] is
given. Set a1 = mp if b ≥ √

mp + ϕm1 and otherwise take a1 = mi where
mi is the largest element of M for which b ∈ [

√
mi + ϕm1 ,

√
mi+1 + ϕm1 ).

Having found a1, a2, . . . , an−1, we take an to be the largest element mi of M
for which

√
a1, . . . , an−1, mi, m1, m1, m1, . . . =

√
a1, . . . , an−1, mi + ϕm1 ≤ b.

The sequence of partial expressions (Sn)∞n=1 determined by the terms (a1, a2,
a3, . . . ) is bounded above by b, and therefore must converge. We will show
that it converges to b by considering the auxiliary sequence (bn)∞n=1 defined
by

b2n =
√

a1, . . . , an, mp, mp, mp, . . . =
√

a1, . . . , an + ϕmp ∀n ∈ N

b2n−1 =
√

a1, . . . , an, 0, 0, 0, . . . =
√

a1, . . . , an = Sn ∀n ∈ N.
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Clearly Sn = b2n−1 ≤ b for all n ∈ N. We will now show by induction that
b ≤ b2n for all n ∈ N. For n = 1, suppose a1 = mi < mp. Then

b2n =
√

a1 + ϕmp =
√

mi + ϕmp ≥
√

mi+1 + ϕm1 > b

by the assignment of a1 = mi. If a1 = mp, then b2n =
√

mp + ϕmp = ϕmp ≥
b ∈ [ϕm1 , ϕmp ]. Now suppose we have shown that b2n−2 ≥ b. Consider
b2n =

√
a1, . . . , an−1, an + ϕmp . If an = mp, then

b2n =
√

a1, . . . , an−1, mp + ϕmp =
√

a1, . . . , an−1 + ϕmp ≥ b

by the induction hypothesis. If an = mi < mp, then

b2n =
√

a1, . . . , an−1, mi + ϕmp

=
√

a1, . . . , an−1 +
√

mi + ϕmp

≥
√

a1, . . . , an−1 +
√

mi+1 + ϕm1

≥ b

where the last inequality follows from the choice of an = mi to be the largest
mk for which

√
a1, . . . , an−1, mk + ϕm1 ≤ b. This completes the proof that

b2n−1 ≤ b ≤ b2n ∀n ∈ N.
For a fixed k ∈ N, let hk be defined as in Lemma 2.1, with rn = 2 ∀n ∈ N.

Now given i > j > 2k, we have bi = hk(x1) for some x1 ∈ [0, ϕmp ] and
bj = hk(x0) for some x0 ∈ [0, ϕmp ]. The mean value theorem applies to hk

over the interval with endpoints x0 and x1, so

|bi − bj| = |hk(x1) − hk(x0)| = h′
k(c)|x1 − x0|

for some c between x0 and x1. Now |x1 − x0| ≤ ϕmp and, by Lemma 2.1,
h′

k(c) ≤ 2−k, so we have |bi − bj| ≤ ϕmp2
−k for any i, j > k. Given any ε > 0,

we may find k ∈ N such that ϕmp2
−k < ε, and it follows that (bn)∞n=1 is a

Cauchy sequence and must converge. Now the two subsequences (b2n−1)
∞
n=1

and (b2n)∞n=1 of the convergent sequence (bn)∞n=1 must have the same limit L,
and the inequality Sn = b2n−1 ≤ b ≤ b2n ∀n ∈ N shows that L ≤ b ≤ L, so
L = b. In particular, (b2n−1)

∞
n=1 = (Sn)∞n=1 must converge to b.

The argument of the last paragraph above can be used to show that
if M = {m1, . . . , mp} where 0 < m1 < . . . < mp and an ∈ M for n =

6



1, . . . , k, . . . , j, then the nested radicals
√

a1, . . . , ak and
√

a1, . . . , aj differ
by no more than 2−kϕmp .

In choosing sets of values M = {m1, . . . , mp} to serve as terms of contin-
ued radical representations of the elements of an interval [ϕm1 , ϕmp ], we might
want the most efficient selection of terms. Suppose there exists i ∈ {1, 2, . . . ,
p − 1} such that

√
mi + ϕmp >

√
mi+1 + ϕm1 . Then the algorithm of The-

orem 2.2 applied to b =
√

mi + ϕmp =
√

mi, mp, mp, mp, . . . greedily chooses
the initial term as large as possible and produces a representation of form
b =

√
mi+1, a2, a3, . . .. Thus, we do not have uniqueness of representation if√

mi + ϕmp >
√

mi+1 + ϕm1 for some i ∈ {1, . . . , p − 1}. Consequently, in
choosing the values {m1, . . . , mp} most efficiently, the inequalities√

mi + ϕmp ≥
√

mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}

to insure that every value in [ϕm1 , ϕmp ] is representable must actually be
equalities √

mi + ϕmp =
√

mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}

to prevent unnecessary duplication of representation. These equalities will
not eliminate all duplication of representation, but will limit it to situa-
tions involving overlapping endpoints of the intervals (Ii)

p
i=1 where Ii =

[
√

mi + ϕm1 ,
√

mi + ϕmp ] contains all the points representable as
√

mi, a2, a3, . . ..
If there exists b ∈ [ϕm1 , ϕmp ] having distinct representations b =

√
a1, a2, . . . =√

b1, b2, . . . with a1 �= b1, then a1 = mi implies b ∈ Ii and b1 = mj implies
b ∈ Ij. Since i �= j and Ii ∩ Ij �= ∅, we must have (assuming, without loss of
generality, that i < j) b =

√
mi + ϕmp =

√
mi+1 + ϕm1 , the shared endpoint

of adjacent intervals Ii and Ij. It follows that the only duplication of rep-
resentations must be of form

√
c1, . . . , cz, a1, a2, . . . =

√
c1, . . . , cz, b1, b2, . . .,

where
√

a1, a2, . . . =
√

b1, b2, . . . are as above. That is, the only possible
duplication of representation must be of form√

c1, . . . , cz, mi + ϕmp =
√

c1, . . . , cz, mi+1 + ϕm1√
c1, . . . , cz, mi, mp, mp, mp, . . . =

√
c1, . . . , cz, mi+1, m1, m1, m1, . . . ,

where repeating the largest value mp is equal to raising the preceding term
from mi to mi+1 and repeating the smallest value m1. (Compare to the
decimal equation 1.3999 = 1.4000.)

To investigate when
√

mi + ϕmp =
√

mi+1 + ϕm1 may occur, we start
with a lemma.
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Lemma 2.3 Suppose z and w are distinct natural numbers. Then
√

z −√
w ∈ Z if and only if

√
z and

√
w are natural numbers.

Proof. Suppose z, w ∈ N and
√

z−√
w = r ∈ Z\{0}. Then r2 = z−2

√
zw+

w ∈ N ⇒ √
zw ∈ Q ⇒ √

zw ∈ N. Now r
√

z = (
√

z −√
w)

√
z = z −√

zw =
s ∈ Z (recalling that

√
zw ∈ N). Dividing r

√
z = s by r �= 0 shows

√
z ∈ Q

and thus
√

z ∈ N. Similarly, r
√

w ∈ Z implies
√

w ∈ N. The converse is
immediate.

Now suppose
√

mi + ϕmp =
√

mi+1 + ϕm1 . Squaring both sides of this

equation leads to ϕmp − ϕm1 = mi+1 − mi ∈ N. Since ϕx = 1+
√

4x+1
2

, we

find that ϕmp − ϕm1 ∈ N if and only if
√

4mp + 1 −
√

4m1 + 1 is an even

integer. By Lemma 2.3,
√

4mp + 1 and
√

4m1 + 1 must both be integers,
and as square roots of odd numbers, they must both be odd integers (so
their difference is even). Adding 1 to each and dividing by 2 shows that ϕmp

and ϕm1 are integers.
Thus, to avoid unnecessary duplication of representation, we must have√

mi + ϕmp =
√

mi+1 + ϕm1 , or mi+1 = mi + ϕmp − ϕm1 , and ϕm1 and ϕmp

must both be integers, say n + 1 and j + 1. Recall that this occurs if and
only if m1 = n(n+1) and mp = j(j +1) for some values n, j ∈ N with j > n,
and it follows that

M = {n(n + 1), n(n + 1) + 1(j − n), n(n + 1) + 2(j − n), . . . , j(j + 1)}

has j + n + 2 equally spaced terms.
Below, we summarize our results on “efficient” sets M for which S(M) is

an interval and the terms of M are spaced as widely as possible to eliminate
unnecessary duplication of representations.

Theorem 2.4 Suppose M = {m1, m2, . . . , mp} ⊆ N where 0 < m1 < m2 <
· · · < mp and√

mi + ϕmp =
√

mi+1 + ϕm1 ∀i ∈ {1, . . . , p − 1}.

Then M = {n(n + 1), n(n + 1) + 1(j − n), n(n + 1) + 2(j − n), . . . , j(j + 1)},
ϕ1 = n + 1 and ϕp = j + 1 are natural numbers, mi+1 = mi + ϕmp − ϕm1 =
mi + j−n for each i ∈ {1, . . . , p−1}, each number in the interval [ϕm1 , ϕmp ]
is representable as a continued radical

√
a1, a2, a3, . . . with terms ai ∈ M , and

the representation is unique except for expressions of form

√
c1, . . . , cz, mi, mp, mp, mp, . . . =

√
c1, . . . , cz, mi+1, m1, m1, m1, . . . .
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Example 2.5 Let M = {2, 4, 6, 8, 10, 12}. Now m1 = 2 = 1(2) = 2T1, mp =
12 = 3(4) = 2T3, ϕm1 = ϕ2 = 2, and ϕmp = ϕ12 = 4. Observe that ϕmp −
ϕm1 = 4 − 2 = 2, and our set M = {m1, . . . , mp} does satisfy mi+1 = mi +
ϕmp −ϕm1 for all i = 1, . . . , p−1, that is

√
mi + ϕmp =

√
mi+1 + ϕm1. Thus,

every real number b ∈ [2, 4] = [ϕm1 , ϕmp ] has a representation
√

a1, a2, . . .
where ai ∈ {2, 4, 6, 8, 10, 12} ∀i ∈ N. Duplication of representations occur,
for example, in√

8, 4, 12, 12, 12, . . . =
√

8, 4 + ϕ12 =
√

8, 4 + 4

=
√

8, 6 + 2 =
√

8, 6 + ϕ2 =
√

8, 6, 2, 2, 2, . . . .

To find the representation of π ∈ [2, 4], note that
√

8 ≈ 2.82842712 ≤ π <
√

10 ≈ 3.16227766,

so our algorithm assigns a1 = 6, the largest value of mi ∈ M for which√
mi + ϕ2 =

√
mi + 2 ≤ π. Having found a1, we note that√

6, 12 + ϕ2 =
√

6, 14 ≈ 3.12116282 ≤ π,

so we have a2 = 12. Next,√
6, 12, 6 + ϕ2 =

√
6, 12, 8 ≈ 3.13859358

≤ π <
√

6, 12, 10 =
√

6, 12, 8 + ϕ2 ≈ 3.14545337,

so a3 = 6 and
√

a1, a2, a3 =
√

6, 12, 6. Next,√
6, 12, 6, 6 + ϕ2 =

√
6, 12, 6, 8 ≈ 3.14153977

≤ π <
√

6, 12, 6, 10 ≈ 3.14268322,

so a4 = 6 and
√

a1, a2, a3, a4 =
√

6, 12, 6, 6. Continuing, we find that

π =
√

6, 12, 6, 6, 2, 2, 10, 4, 4, 2, 8, 10, 12, 6, . . ..

The theorem below shows that when using a set of terms M as described
in Theorem 2.4, any number having a periodic sequence of terms is either
irrational or an integer.

Theorem 2.6 Suppose M satisfies the conditions of Theorem 2.4, x is a
rational number in S(M) = [ϕm1 , ϕmp ], and x =

√
a1, a2, a3, . . . where ai ∈ M

for all i ∈ N. Then the sequence a1, a2, a3, . . . of terms of x is eventually
periodic if and only if x is an integer.
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Proof. Suppose x ∈ S(M) ∩ Z. If
√

a1, a2, a3, . . . is not the unique represen-
tation of x, then by Theorem 2.4 the sequence of terms is either eventually
constantly m1 or eventually constantly mp, and we are done. Thus, sup-
pose

√
a1, a2, a3, . . . is the unique representation of x. The algorithm to find

the terms a1, a2, . . . chooses a1 as large as possible so that x =
√

a1 + b1

where b1 =
√

a2, a3, . . . ∈ S(M). Furthermore, b1 = x2 − a1 is an inte-
ger in S(M). Now b1 =

√
a2 + b2 where b2 =

√
a3, a4, . . . ∈ S(M), and

b2 = b2
1 − a2 is an integer in S(M). Continuing in this manner, we find that

bj =
√

aj+1, aj+2, . . . is an integer in S(M) for each j ∈ N. Since S(M) ∩ Z
is finite, there must exist a smallest pair of indices j and j + k such that
bj = bj+k. Thus,

√
aj+1, aj+2, . . . =

√
aj+k+1, aj+k+2, . . ., and uniqueness of

representation implies ar = ar+k for all integers r > j.
For the converse, first suppose x =

√
a1, . . . , ak, a1, . . . , ak, . . . has a

purely periodic representation and x ∈ Q. Then x is a solution to p(x) = x or
p(x)−x = 0 where p(x) = (· · · ((x2−a1)

2−a2)
2−· · ·−ak−1)

2−ak is a monic
polynomial with integer coefficients. By the rational root theorem, x must
be an integer. Next, if x =

√
b1, . . . , bj, a1, . . . , ak, a1, . . . , ak, . . . ∈ Q has an

eventually periodic representation, then x is a root of the monic polynomial
with integer coefficients p(x)− a where p(x) = (· · · ((x2 − b1)

2 − b2)
2 − · · · −

bj−1)
2 − bj and a =

√
a1, . . . , ak, a1, . . . , ak, . . . ∈ Z. Again, the rational root

theorem implies x ∈ Z.

3 Representation allowing 0 as a term

Allowing zero as a term in our continued radicals introduces some minor
complications. We will assume our terms an all come from a set M =
{m1, m2, . . . , mp} ⊆ N ∪ {0} where 0 = m1 < m2 < · · · < mp. To pre-
vent gaps in the set S(M) of numbers representable with these terms, the
largest value of form

√
mi, a2, a3, . . . must equal or exceed the smallest value

of form
√

mi+1, b2, b3, . . .. That is, we must have
√

mi, mp, mp, mp, . . . ≥
√

mi+1, 0, 0, 0, . . .√
mi + ϕmp ≥ √

mi+1.

However, note that besides the single value
√

mi+1 =
√

mi+1, 0, 0, 0, . . ., every

other value representable as
√

mi+1, b2, b3, . . . must be greater than√
mi+1, 1 =

√
mi+1 + 1 = lim

k→∞

√
mi+1, 0, 0, . . . , 0, 0, bk, 0, 0, . . . where bk �= 0.
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We saw in the previous section that if all term values mi ∈ M are positive,
then the numbers representable as

√
mi, a2, . . . where an ∈ M ∀n ∈ N formed

a closed interval Ii = [
√

mi + ϕm1 ,
√

mi + ϕmp ] (assuming the mi’s were
chosen so that Ii ∩ Ii+1 �= ∅ for i = 1, . . . , p− 1). We now see that if m1 = 0,
then the numbers representable as

√
mi, a2, . . . where an ∈ M ∀n ∈ N will

be a subset of {√mi } ∪ (
√

mi + 1,
√

mi + ϕmp ] = Ji. To prevent any gaps
in S(M), it is necessary that

⋃
{Ji : i = 1, 2, . . . , p} forms a solid interval.

Consequently, it is necessary that√
mi + ϕmp ≥

√
mi+1 + 1 ∀i = 1, 2, . . . , p − 1.

Squaring both sides of this equation gives the necessary condition that

mi+1 ≤ mi + (ϕmp − 1) ∀i = 1, 2, . . . , p − 1.

One would again expect that choosing the values of m1, . . . , mp so that the
above inequalities are equalities will result in the most efficient representation
of the largest possible interval using the smallest number of terms. For
equality to hold, we must have that ϕmp ∈ N, and thus mp = (q + 1)q for
some q ∈ N. Then since ϕ(q+1)q = q + 1, the equation mi+1 = mi + (ϕmp − 1)
becomes mi+1 = mi + q, and thus M = {0, q, 2q, 3q, . . . , (q + 1)q}. The
theorem below confirms these expectations.

Theorem 3.1 Suppose q ∈ N. Any b ∈ (1, q + 1] can be represented as a
continued radical

√
a1, a2, a3, . . . where ai ∈ {0, q, 2q, 3q, . . . , (q + 1)q} = M

for every i ∈ N. Furthermore, if any b ∈ (1, q + 1] can be represented as a
continued radical

√
a1, a2, a3, . . . where ai ∈ J for every i ∈ N and |J | ≤ |M |,

then J = M . That is, M is the unique set of q +2 nonnegative integer terms
allowing every b ∈ (1, q + 1] to be represented, and there is no set of q + 1
or fewer nonnegative integer terms which allow every b ∈ (1, q + 1] to be
represented.

Proof: Given q ∈ N and b ∈ (1, q+1], we present an algorithm to generate
a sequence (ai)

∞
i=1 such that b =

√
a1, a2, a3, . . . where each ai ∈ M = {mi :

i = 1, . . . , q + 2} and mi = (i− 1)q. The algorithm is greedy, taking each ai

as large as possible subject to the restriction that
√

a1, . . . , ak ≤ b ∀k ∈ N.
Set a1 = mi if b =

√
mi and otherwise take a1 to be the largest mi for which√

mi + 1 < b (or
√

mi + 1 ≤ b in case q = 1). Having found a1, a2, . . . , an−1,
take an = mi if

√
a1, . . . , an−1, mi = b and otherwise take an to be the largest

11



mi for which
√

a1, . . . , an−1, mi + 1 < b (or
√

a1, . . . , an−1, mi + 1 ≤ b in case
q = 1).

The sequence (Sn)∞n=1 of partial expressions determined by the terms
(a1, a2, a3, . . . ) generated by the algorithm is bounded above by b and there-
fore converges. Now the algorithm assigns ai = 0 for all i > n if and only
if b = Sn =

√
a1, . . . , an for some n ∈ N, and in this case (Sn)∞n=1 is eventu-

ally constantly b and thus clearly converges to b. Thus, we will assume that
(an)∞n=1 is not eventually constantly 0. Letting (bn)∞n=1 be the auxiliary se-
quence as defined in Theorem 2.2, we have, as before, b2n−1 ≤ b ≤ b2n for all
n ∈ N. Let an1 , an2 , an3 , . . . be the subsequence of nonzero terms of (an)∞n=1.
Considering the effect of the zeros in the sequence (an)∞n=1, for i, j ≥ 2nk, we
have bi = hk(x0) and bi = hk(x1) for some x0, x1 ∈ [0, q + 1] where

hk(x) =
r1

√
an1 +

r2

√
an2 +

r3
√

an3 + · · · + rk
√

ank
+ x,

where r1 = 2n1 , and ri = 2(ni−ni−1) for i = 2, . . . , k. By the mean value
theorem, there exists c between x0 and x1 with

|bi − bj| = |hk(x1) − hk(x0)| = |x1 − x0|h′
k(c) ≤ (q + 1)2−k,

where the last inequality follows from Lemma 2.1. As before, (bn)∞n=1 is a
Cauchy sequence and must converge to b, and consequently, the subsequence
(b2n−1)

∞
n=1 = (Sn)∞n=1 converges to b.

Now the elements of M were chosen so that the necessary inequalities
mi+1 ≤ mi + (ϕmp − 1) ∀i = 1, 2, . . . , p − 1 were actually equalities, and
thus elements of M are spaced as widely as possible without introducing
gaps in the set of numbers representable using terms from M . Consequently,
if the continued radicals whose terms come from J = {0, n1, . . . , ns} where
|J | ≤ |M | also cover the interval (1, q +1], then ϕns ≥ q +1 so ns ≥ (q +1)q.
Now if J �= M , it follows that at least one pair of consecutive entries of J
differ by more than the uniform distance j between consecutive entries of
M , contrary to the fact that the entries of M were already chosen as widely
spaced as possible.

We now turn our attention to the question of uniqueness of representation.
Uniqueness of representation fails if the set M of possible values for the terms
contains 0, n and ϕn for some integer n ∈ N, for then√

ϕn, 0, 0, 0, . . . =
√

0, n, n, n, . . ..

12



In case M = {0, q, 2q, 3q, . . . , (q + 1)q} = {m1, . . . , mq+2}, we will see
that the converse of the implication is also true. Let us first assume q ≥ 2.

Suppose
√

c1, c2, . . . , cz, a1, a2, a3, . . . and
√

c1, c2, . . . , cz, b1, b2, b3, . . . are
distinct representations of b ∈ (1, q + 1] where a1 �= b1. Squaring both sides
of the equation

√
c1, c2, . . . , cz, a1, a2, a3, . . . =

√
c1, c2, . . . , cz, b1, b2, b3, . . .

and subtracting ci repeatedly as i ranges from 1 to z gives

√
a1, a2, a3, . . . =

√
b1, b2, b3, . . . where a1 �= b2.

Now from the algorithm of Theorem 3.1, the numbers representable as√
mi, a2, . . . where an ∈ Mq ∀n ∈ N are the elements of Ji = {√mi } ∪ Ii

where Ii = (
√

mi + 1,
√

mi + ϕmp ]. The intervals Ii are mutually disjoint,
so any duplication of representation can only occur for a number of form√

mi ∈ Ii−1. Now if we have distinct representations of a number

√
mi =

√
mi−1, b2, b3, b4, . . .,

squaring both sides and recalling that mi − mi−1 = q gives

q =
√

b2, b3, b4, . . . (bn ∈ {0, q, 2q, . . . , (q + 1)q} ∀n ≥ 2).

Now we show that the only such representations of q are

q =
√

q2, 0, 0, 0, . . .

=
√

(q − 1)q, (q − 1)q, . . . , (q − 1)q, q2, 0, 0, 0, . . .

=
√

(q − 1)q, (q − 1)q, (q − 1)q, . . .

Suppose q =
√

b2, b3, b4, . . . where bn ∈ {0, q, 2q, . . . , (q + 1)q} for n =
2, 3, 4, . . . and (bi)

∞
i=2 �= (q2, 0, 0, 0, . . . ). Clearly b2 �= (q + 1)q = q2 + q,

for then
√

b2, b3, b4, . . . > q and b2 �= q2 for then (bi)
∞
i=2 = (q2, 0, 0, 0, . . . ).

Furthermore, b2 �≤ (q − 2)q, for if b2 ≤ (q − 2)q, then√
b2, b3, b4, . . . ≤

√
(q − 2)q, (q + 1)q, (q + 1)q, (q + 1)q, . . .

=
√

q2 − 2q + ϕ(q+1)q

=
√

q2 − 2q + q + 1

< q since q ≥ 2.
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Thus, we must have b2 = (q − 1)q and we now have

q =
√

(q − 1)q, b3, b4, . . ..

Squaring this equation yields

q =
√

b3, b4, . . ..

Repeating the argument above, we find that (b3, b4, b5, . . . ) = (q2, 0, 0, . . . )
or b3 = (q − 1)q. Iterating, we find that (b2, b3, b4, . . . ) is either constantly
(q − 1)q or has a finite number of initial terms equal to (q − 1)q followed by
q2, 0, 0, 0, . . . . This completes our claim about the possible representations
of q =

√
b2, b3, b4, . . ..

Now it follows that the only possible duplicate representations of
√

a1, a2, . . . =√
b1, b2, . . . in which a1 �= b1 are of form

√
mi =

√
mi−1, q2, 0, 0, 0, . . .

=
√

mi−1, (q − 1)q, (q − 1)q, . . . , (q − 1)q, q2, 0, 0, 0, . . .

=
√

mi−1, (q − 1)q, (q − 1)q, (q − 1)q, . . ..

Furthermore, all possible duplicate representations are of form

√
c1, . . . , cz, a1, a2, . . . =

√
c1, . . . , cz, b1, b2, . . .

where
√

a1, a2, a3, . . . and
√

b1, b2, b3, . . . are as above.
We summarize our results, stated contrapositively, below.

Theorem 3.2 A real number b ∈ (
√

q, q + 1) has a unique representation
as

√
a1, a2, a3, . . . where ai ∈ Mq = {0, q, 2q, . . . , (q + 1)q} with q ≥ 2

if and only if it cannot be represented as a terminating continued radical√
a1, a2, . . . , az, 0, 0, 0, . . .. A number b ∈ (

√
q, q + 1) has a terminating con-

tinued radical representation
√

a1, a2, . . . , az, 0, 0, 0, . . . if and only if it has a
continued radical representation ending in repeating (q − 1)q’s. Observe that√

q, 0, 0, 0, . . . and
√

(q + 1)q, (q + 1)q, (q + 1)q, . . .

respectively are the unique representations of
√

q and ϕ(q+1)q = q + 1.
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Proof. The first statement was proved above. The second statement follows
from the equation√

c1, . . . , cz, mi, 0, 0, . . . =
√

c1, . . . , cz, mi−1, (q − 1)q, (q − 1)q, . . .

for q ≥ 2 and i ∈ {2, . . . , q + 2}.
To complete the uniqueness discussion, we now consider the special case

q = 1 in which our terms are selected from M1 = {0, 1, 2}. The arguments
required for this case are similar to those given above, but the illustrative
nature of a specific case may be helpful. This result appeared in Sizer [7].

Theorem 3.3 Any number b ∈ (1, 2) can be represented as a continued rad-
ical

√
a1, a2, . . . where ai ∈ {0, 1, 2}. This representation is unique unless

b has such a representation ending in repeating 0s. A number b ∈ (1, 2)
has such a representation ending in repeating 0s if and only if it has such a
representation ending in repeating 2s.

Note that
√

1, 0, 0, 0, 0, . . . = 1 and
√

2, 2, 2, 2, 2, . . . = 2 are the unique
representations of 1 and 2.

Proof: The existence of such a representation of b ∈ (1, 2) follows from
Theorem 3.1.

Suppose
√

c1, . . . , cz, a1, a2, a3, . . . and
√

c1, . . . , cz, b1, b2, b3, . . . are dis-
tinct representations of b ∈ (1, 2) and a1 �= b1. Now if

√
a1, a2, a3, . . . =

b′ =
√

b1, b2, b3, . . ., the observation that
√

0, x2, x3, . . . ∈ {0}∪ ∈ [1,
√

2]√
1, x2, x3, . . . ∈ {1} ∪ [

√
2,
√

3]√
2, x2, x3, . . . ∈ {

√
2} ∪ [

√
3, 2]

implies that either

b′ =
√

2 =
√

2, 0, 0, 0, . . . =
√

1, 1, 0, 0, 0, . . . =
√

0, 2, 2, 2, . . .

or
b′ =

√
3 =

√
2, 1, 0, 0, 0, . . . =

√
1, 2, 2, 2, . . . .

Inserting the initial terms c1, . . . , cz, we find that any distinct representations
of b by continued radicals end in repeating zeros or repeating twos.

Suppose b ∈ (1, 2) and b =
√

a1, . . . , an, 2, 2, 2, . . ., where an �= 2. (Since
b �= 2, n ≥ 1.) Now either an = 0 and

b =
√

a1, . . . , an−1, 0, 2, 2, 2, . . . =
√

a1, . . . , an−1, 2, 0, 0, 0, . . .,
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or an = 1 and

b =
√

a1, . . . , an−1, 1, 2, 2, 2, . . . =
√

a1, . . . , an−1, 2, 1, 0, 0, . . ..

Similarly, suppose b ∈ (1, 2) and b =
√

a1, . . . , an, 0, 0, 0, . . ., where an �=
0. If an = 2 =

√
2, 2, 2, . . ., then b =

√
a1, . . . , an−1, 0, 2, 2, 2, . . . gives the

desired representation. If an = 1, then b =
√

a1, . . . , an−1, 1 and without
loss of generality, we may assume an−1 �= 0. If an−1 = 1, then

√
an−1, an =√

1, 1 =
√

2 =
√

0, 2, 2, 2, . . ., so b =
√

a1, . . . , an−2, 0, 2, 2, 2, . . . is the desired
representation. If an−1 = 2, then

√
an−1, an =

√
2, 1 =

√
3 =

√
1, 2, 2, 2, . . .,

so b =
√

a1, . . . , an−2, 1, 2, 2, 2, . . . is the desired representation.

We note that the analog to Theorem 2.6 holds for continued radicals in
S(M) where M is as in Theorem 3.1.

Finally, we observe that taking the terms of
√

a1, a2, a3, . . . to be elements
of {0, q, 2q, 3q, . . . , (q + 1)q} where q ∈ N, we can represent every element
of (1, q + 1], and since this interval has length q ≥ 1, it follows that every
real number can be represented as a0 +

√
a1, a2, a3, . . . where a0 ∈ Z and

ai ∈ M ∀i ∈ N.

4 Continued radicals whose terms assume only

two values

We note that one cannot represent all points of an interval using continued
radicals whose terms come from a set of two values M = {m1, m2} ⊆ N∪{0}.
If both values are nonnegative, then the requirement from Theorem 2.2 that√

mi + ϕmp ≥ √
mi+1 + ϕm1 implies that√
m1 +

1 +
√

4m2 + 1

2
≥

√
m2 +

1 +
√

4m1 + 1

2
,

and it follows that
√

4m2 + 1 − 2m2 ≥
√

4m1 + 1 − 2m1. This last inequal-
ity must fail since m2 > m1 but f(x) =

√
4x + 1 − 2x is strictly decreas-

ing on [0,∞). Similarly, if M = {0, m2} where m2 ∈ N, the requirement√
mi + ϕmp ≥ √

mi+1 + 1 to insure no gaps becomes√
0 +

1 +
√

4m2 + 1

2
≥

√
m2 + 1,
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which is easily seen to have no positive solutions.
Furthermore, the set D of real numbers representable using terms from a

two element set M = {m1, m2} ⊆ N will have a familiar pattern of gaps.

Theorem 4.1 If m1 and m2 are natural numbers with m1 < m2, then the
set D = {√a1, a2, . . . : ai ∈ {m1, m2} ∀i ∈ N} is homeomorphic to the Cantor
ternary set C.

Proof. The Cantor set C is the set of real numbers in [0, 1] which have
ternary representations of form 0.c1c2c3 . . . where each digit ci is either 0 or
2. Each element of C has a unique such representation (though some have
other representations using 1’s.) Note that the arguments of the previous
sections insure that each element of D is determined by a unique sequence of
terms in M . Letting g(0) = m1 and g(2) = m2, the function h : C → D which
maps 0.c1c2c3 . . . to

√
g(c1), g(c2), g(c3), . . . is a bijection. The continuity of

h and h−1 follows from the fact that these functions both preserve limits:
Suppose (ci)

∞
i=1 is a sequence in C converging to c0 ∈ C where for i ∈ N∪{0},

ci has ternary representation 0.ci,1ci,2ci,3 . . . with ci,n ∈ {0, 2} for each n ∈ N.
Now the convergence of ci to c0 implies that the sequences (ci,1, ci,2, ci,3, . . . )
of digits of ci must “converge” to the sequence of digits of c0 in the sense
that the sequence (ki)

∞
i=1 converges to ∞ where ki ∈ N∪{∞} is the smallest

value of k for which ci,k �= c0,k. It follows that the corresponding sequence
(g(ci,1), g(ci,2), g(ci,3), . . . ) of terms of h(ci) must “converge” to the sequence
of terms of h(c0) in the same sense, so h preserves limits. A similar argument
shows that h−1 also preserves limits.

The theorem above only used the assumption that the integers m1, m2 be
nonzero to insure uniqueness of representation of continued radicals of form√

a1, a2, . . .. If M = {0, m2} where m2 ∈ N, and b has two representations
as continued radicals having terms from M , removing any initial identical
terms gives a number having two representations which differ in the first
term. But

√
0, a2, a3, . . . ∈ {0} ∪ (1,

√
ϕm2 ] and

√
m2, b2, b3, . . . ∈ {√m2 } ∪

(
√

m2 + 1, ϕm2 ], so considering the remarks of the first paragraph of this
section, the only possible duplication of representation could occur for

√
m2

if it is less that or equal to
√

ϕm2 . This would lead to −1 ≤
√

4m2 + 1−2m2 =
f(m2) where f(x) is as defined before Theorem 4.1. Since f(x) is strictly
decreasing and f(2) = −1, it follows that the only two-point sets M =
{m1, m2} ⊆ N ∪ {0} for which the proof of Theorem 4.1 fails to show D =
S(M) = {√a1, a2, . . . : ai ∈ {m1, m2} ∀i ∈ N} is homeomorphic to the Cantor
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ternary set, are the sets M = {0, 1} and M = {0, 2}. With M = {0, 1}, for
example, we have

√
a1, . . . , an, 1, 0, 0, 0, . . . =

√
a1, . . . , an, 0, 1, 0, 0, . . ., and

thus h−1, as defined in the proof of Theorem 4.1, is not well-defined at these
points.
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