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Suppose an n×m grid is printed on an n×m note card. Cutting only along grid
lines, in how many ways may a connected piece be cut from the card? In how many
ways may the card be cut into two connected pieces? Three connected pieces?

We address these questions for an n × 2 card. For example, Figure 1 shows four
(of, as we will see, 286) ways a 5 × 2 card can be cut into three connected pieces.
The solutions involve recursively defined sequences which exhibit some interesting
interrelated patterns and provide a rich topic for independent research and discovery
by students.

Figure 1. Four (of the 286) partitions of a 5× 2 rectangle into three connected pieces.

Two interpretations of the grid-line restrictions are tilings and pixels. Problems on
tilings have a long and rich history ([1], [3]), while applications in computer imaging
have driven the more recent interpretation involving pixels ([2]). We will follow the
latter interpretation, viewing an n× 2 (pixelated) rectangle as a collection of 2n (1×
1) pixels determined by the grid lines. By a subset of R, we mean a pixelated subset,
that is, a subset of the 2n pixels of R. Two pixels are adjacent if they share a common
edge. A subset S of R is connected if for any x0, xk ∈ S, there exists a sequence
of pixels x0, x1, . . . , xk in S with xi adjacent to xi−1 for i = 1, . . . , k. Thus, S is
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connected if the adjacency graph for S is a connected graph. Note that the empty set
is connected. Recall that a partition of R is a collection of nonempty mutually disjoint
subsets of R whose union is R. If {A,B} is a partition of a pixelated rectangle, then
A and B share no common pixels; this does not prohibit pixels from A and B from
sharing a common edge in their geometric representations.

Before addressing n× 2 rectangles, we note that a complete analysis of n× 1 rect-
angles is easy. Any nonempty connected subset of an n× 1 rectangle is determined by
its top edge and bottom edge. Since there are n+ 1 possible choices for edges, there
are
(
n+1
2

)
nonempty connected subsets. Or, one may observe that there is one n× 1

connected subset, two (n − 1) × 1 connected subsets, and so on, up to n (1 × 1)

connected subsets, giving a total of 1 + 2 + · · · + n = n(n+1)

2
=
(
n+1
2

)
nonempty

connected subsets. A partition of an n× 1 rectangle into k nonempty connected sub-
sets is achieved by placing k − 1 internal dividers into the n− 1 internal gaps between
the pixels. This can be done in

(
n−1
k−1

)
ways.

Connected sets of height n in an n× 2 rectangle
First, we will count the number of connected subsets which span the entire height of an
n× 2 rectangle. We will depict a subset of a rectangle by marking each included pixel
with an X and each excluded pixel with an O. Suppose S is a connected subset of an
n× 2 rectangle with height n, and 1 ≤ k < n. If the kth row of S is XX , then the
(k + 1)st row could be XO, XX , or OX . If the kth row is XO, then the (k + 1)st

row could only be XO or XX . The case of the kth row being OX is symmetric to the
XO case, with the (k + 1)st row being either OX or XX . These observations give
the recursion suggested shown in Figure 2.
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Figure 2. The recursion generating columns A, B, C and columns E, F, G of Table 1.

Using this recurrence pattern, Table 1(a) shows the number of connected subsets of
height n in an n× 2 rectangle having top row XO, and Table 1(b) shows the number
of connected subsets of height n in an n× 2 rectangle having top row XX . The top
row of a nonempty connected subset could also be OX , but clearly the associated table
would be a reflection (around the XX column) of Table 1(a).

We will denote the nth entry of column A by An, with similar notation applying
to each of the other columns B through H. Thus, B8 = 169 says that there are 169
nonempty connected subsets of height 8 in an 8 × 2 rectangle which have first row
XO and eighth row XX . Since D8 = 408, there are 408 nonempty connected subsets
of height 8 in an 8× 2 rectangle which have first row XO.
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Top Row XO
bottom bottom bottom

row row row Sum
XO XX OX

n A B C D
1 1 0 0 1
2 1 1 0 2
3 2 2 1 5
4 4 5 3 12
5 9 12 8 29
6 21 29 20 70
7 50 70 49 169
8 120 169 119 408
9 289 408 288 985
10 697 985 696 2378
11 1682 2378 1681 5741
12 4060 5741 4059 13860

Top Row XX
bottom bottom bottom

row row row Sum
XO XX OX

n E F G H
1 0 1 0 1
2 1 1 1 3
3 2 3 2 7
4 5 7 5 17
5 12 17 12 41
6 29 41 29 99
7 70 99 70 239
8 169 239 169 577
9 408 577 408 1393
10 985 1393 985 3363
11 2378 3363 2378 8119
12 5741 8119 5741 19601

(a) (b)

Table 1. Number of connected sets of height n in an n× 2 rectangle (a) with top row XO
and (b) with top row XX .

There are some interesting relations between the columns of Table 1. Columns B,
E and G are equal. Column D is column B shifted up by one place, and column H is
column F shifted up by one place.

We state these and some other relations between the columns here.

Proposition 1. For every natural number n > 1,

(a) Bn = En = Gn.
(b) Bn = Dn−1.
(c) Fn = Hn−1.
(d) An + Cn−1 = Bn.
(e) An + Cn = Bn−1 +Bn.
(f) An = 1 + Cn.

Proof. (a) The equality of columns E and G follows from the one-to-one correspon-
dence (realized by reflecting over a vertical line) between connected sets whose first
row is XX and last row is XO and connected sets whose first row is XX and last
row is OX . Also, Bn = En, since one counts the connected sets starting with OX
and ending with XX , while the other counts the (horizontally reflected) connected
sets starting with XX and ending with OX .

(b) Recall that Bn counts the connected sets of height n starting with XO and
ending with XX . But if the nth row is XX , the (n − 1)st row could have been
XO,XX , or OX , and Dn−1 gives the number of connected sets of height n − 1
starting with XO and ending with any of the three options XO,XX , and OX . Thus,
Bn = Dn−1. A similar argument shows (c) Fn = Hn−1.

(d) Since An = An−1 + Bn−1 from the recursion of Figure 2, we have An +
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Cn−1 = An−1 + Bn−1 + Cn−1 which, again by the recursion of Figure 2, equals
Bn.

The proofs of (e) and (f) are left to the reader.

While these observations relate the entries of various columns, next we turn to the
relation between the entries within a single column. We start with column B.

Proposition 2. For any n ≥ 3, Bn = 2Bn−1 +Bn−2.

Proof. From Proposition 1, Bn = Dn−1 = An−1 + Bn−1 + Cn−1, and An−1 +
Cn−1 = Bn−2 +Bn−1. Substituting the latter into the former gives desired result.

A more visual proof of Proposition 2 is suggested in Figure 3. By tracing the an-
cestry of the Bn paths reaching XX on the nth row, it is easy to see that there are
Bn−2 + 2Bn−1 of them, proving the claim.
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Figure 3. Paths reaching XX on the nth row.

Thus, the sequence Bn satisfies the recurrence relation xn = 2xn−1 + xn−2.
(Throughout, we will use notation like Bn to denote either the nth term of a sequence
or the sequence whose nth term is Bn; the context will make the usage clear. Also, we
understand that satisfying the recurrence relation xn = 2xn−1 + xn−2 means satisfy-
ing it for every valid choice of n ∈ N.) It is easy to see that if two sequences satisfy
this recurrence relation, then so does any linear combination of these sequences. In
particular, if xn satisfies the recurrence relation, then so does xn−1, and thus so does
xn − xn−1. The converse is almost true, as we see in the next result.

Lemma 3. If sn = xn − xn−1 satisfies the recurrence relation sn = 2sn−1 + sn−2,
then xn satisfies xn = 2xn−1 + xn−2 + k for some fixed constant k.

Proof. Suppose sn = xn − xn−1 satisfies the recurrence relation sn = 2sn−1 +
sn−2. Then

xn − xn−1 = 2(xn−1 − xn−2) + (xn−2 + xn−3).

For any n, define kn to be the number which makes xn = 2xn−1 + xn−2 + kn.
Substituting this expression and the similar one for xn−1 into the left of the equation
above gives

2xn−1 + xn−2 + kn − (2xn−2 + xn−3 + kn−1) = 2(xn−1 − xn−2) + (xn−2 + xn−3),
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which simplifies to kn = kn−1. Thus, the sequence (kn) is a constant sequence (k).
Now it follows that xn = 2xn−1 + xn−2 + k.

Corollary 4. Each of the sequences Bn, Dn, En, Fn, Gn, and Hn satisfy the re-
currence relation xn = 2xn−1 + xn−2. Furthermore, An = 2An−1 +An−2 − 1 and
Cn = 2Cn−1 + Cn−2 + 1.

Proof. We have shown that Bn satisfies the recurrence relation xn = 2xn−1 + xn−2.
Since Bn = En = Gn = Dn−1, the sequences Dn, En, and Gn satisfy the same
recurrence relation. Since En and Gn satisfy the recurrence relation, so does En +
Gn = Hn − Fn = Fn+1 − Fn. Now by Lemma 3, Fn = 2Fn−1 + Fn−2 + k for
some fixed k, and from the initial terms we see F3 = 2F2 + F1, so k = 0. (Or, note
that the proof of Proposition 2 would apply to Fn as well.) Since Hn = Fn−1, Hn

also satisfies the given recurrence relation. Similar applications of Lemma 3 show that
An = 2An−1 +An−2 − 1 and Cn = 2Cn−1 + Cn−2 + 1.

Recurrence relations have been extensively studied ([5] or [6]). The recurrence re-
lation xn = 2xn−1 + xn−2 is a second-order linear homogeneous relation, and can be
solved in a manner analogous to solving a second-order linear homogeneous differ-
ential equation. Specifically, we seek solutions of the form xn = rn. Such a solution
must satisfy the characteristic equation r2 − 2r − 1 = 0, so r = 1±

√
2. Thus, the

general solution of the recurrence relation is xn = s(1 +
√
2)n + t(1−

√
2)n, where

s and t are real numbers. The initial conditions (that is, the values of x1 and x2) are
used to find the values of s and t.

Using this technique, we find, for example, that Dn =
√
2
4
(1 +

√
2)n −

√
2
4
(1 −√

2)n.

Proposition 5. The number of nonempty connected sets of height n in an n × 2
rectangle is 2Dn +Hn = Hn+1 =

1
2
(1 +

√
2)n+1 + 1

2
(1−

√
2)n+1.

Proof. The number Dn tells how many connected sets of height n in an n× 2 rect-
angle have first row XO, and by symmetry, also how many have first row OX . The
number Hn tells how many have first row XX . Adding, we see that the total number of
connected sets of height n is an n× 2 rectangle is 2Dn +Hn. Since Dn = En+1 =
Gn+1 and Hn = Fn+1, we have 2Dn +Hn = En+1 + Fn+1 +Gn+1 = Hn+1. As
noted above, the general solution to the recurrence relation satisfied by Hn+1 has form
s(1 +

√
2)n + t(1−

√
2)n, and the initial conditions H2 = 3 and H3 = 7 lead to the

formula given.

Before leaving this section, we mention a connection with continued fractions. A
simple finite continued fraction [a0; a1, a2, . . . , an] is an expression of form

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2+...+ 1
an

,

where a0 ∈ Z, a1, . . . , an ∈ N. Irrational numbers have infinite continued fractions
[a0; a1, a2, . . .] = limn→∞[a0; a1, . . . , an]. The partial expression [a0; a1, . . . , an] is
called the nth convergent of [a0; a1, a2 . . .], and is a rational number pn

qn
. It is well

known ([4], [6]) that the numerators pn and denominators qn of the convergents of an
infinite continued fraction both satisfy the recurrence relation xn = anxn−1 + xn−2,
with suitable initial conditions (p0 = a0, p1 = a0a1 + 1, q0 = 1, q1 = a1). Since the
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continued fraction for
√
2 is [1; 2, 2, 2, 2, . . .], it follows that the sequences Hn and

Dn are, respectively, the numerators and denominators of convergents of the continued
fraction representation of

√
2. (See A001333 and A000129 of [7].) In particular,

lim
n→∞

Hn

Dn

=
√
2.

All connected sets in an n× 2 rectangle
The nonempty connected subsets in an n× 2 rectangle may have height k where 1 ≤
k ≤ n, and a connected set of height k may be positioned in the n × 2 rectangle in
n+ 1− k ways. Since there are Hk+1 connected rectangles of height k, we see that
the number of nonempty connected subsets in an n× 2 rectangle is

Con(n) =
n∑

k=1

(n+ 1− k)Hk+1.

Some of these numbers are given in Table 2. This sequence appears as A059020
in [7], in the same context as it arises here.

n 1 2 3 4 5 6 7 8 9 10 11
Con(n) 3 13 40 108 275 681 1664 4040 9779 23637 57096

Table 2. The number Con(n) of nonempty connected subsets of an n× 2 rectangle.

Since the empty set is connected, 1 + Con(n) is the total number of connected
subsets of an n× 2 rectangle.

A formula for Con(n) which does not involve a sum is given below.

Proposition 6. The number of nonempty connected subsets in an n× 2 rectangle is

Con(n) =
7 + 5

√
2

4
(1 +

√
2)n +

7− 5
√
2

4
(1−

√
2)n − 2n− 7

2
.

Proof. Since Con(n) =
∑n

k=1(n+ 1− k)Hk+1 and Hj satisfies the recurrence re-
lation xn = 2xn−1 + xn−2, we may ask whether Con(n) also satisfies this recurrence
relation. It does not, but the values of Con(n)− (2Con(n− 1) + Con(n− 2)) sug-
gest the solution. Using the summation formula

Con(n) = n(H2) + (n− 1)H3 + (n− 2)H4 + · · ·+ 3Hn−1 + 2Hn +Hn+1,

we find that

2Con(n− 1) + Con(n− 2)

= 2(n− 1)H2 + (n− 2)[2H3 +H2] + (n− 3)[2H4 +H3] +

· · ·+ 2[2Hn−1 +Hn−2] + [2Hn +Hn−1]

= 2(n− 1)H2 + (n− 2)H4 + (n− 3)H5 + · · ·+ 2Hn +Hn+1.
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Subtracting and substituting H2 = 3, H3 = 7, we get Con(n) − (2Con(n − 1) +
Con(n− 2)) = nH2 + (n− 1)H3 − 2(n− 1)H2 = 4n− 1. Thus, Con(n) satisfies
the second-order linear non-homogeneous recurrence relation Con(n) = 2Con(n−
1) + Con(n− 2) + 4n− 1. As in the theory of linear non-homogeneous differential
equations, since the non-homogeneous forcing term 4n − 1 is a linear function, us-
ing the method of undetermined coefficients, we guess a solution of form Con(n) =
s(1 +

√
2)n + t(1−

√
2)n + kn+ l, where the s and t terms give the general solu-

tion to the homogenous equation. Substituting the first four initial values of Con(n)
and solving the resulting system of four linear equations in s, t, k, l gives the result in
the statement.

Connected subsets of an n× 2 rectangle with connected
complements
Now we turn to counting the partitions of an n× 2 rectangle into two connected sets,
that is, the number of ways to cut an n × 2 note card into two pieces, cutting only
along the n× 2 grid lines. Note that the partitions {A,B} and {B,A} are equal. If
we were counting labeled partitions, say with the first set black and the second set red,
then each (non-labeled) partition {A,B} would have two labelings, and we would
double the number below.

Proposition 7. The number of partitions of an n× 2 rectangle into two connected
sets is p2(n) = 2n2 − n.

Proof. Since we are not counting labeled partitions, we will assume the top left corner
is X , so the top row is XO or XX .

If the top row is XO, suppose the partition has the top k rows (k = 1 to n) being
XO. The remaining rows must be all XX or OO. In the case k = n, completing the
“remaining” rows with XX or with OO gives the same partition, so there are 2n− 1
partitions with top row XO.

If the top row is XX , suppose the partition has the top k rows (k = 1 to n − 1)
being XX . The remaining n− k rows form a partition of an (n− k)× 2 rectangle
with top row XO,OX, or OO. By the previous paragraph, the number of partitions of
the bottom n− k rows starting with XO is 2(n− k)− 1, and summing from k = 1
to n − 1 gives n2 − 2n + 1 such partitions. By symmetry, there will be the same
number of partitions of the bottom n− k rows starting with OX . If the bottom n− k
rows start with OO, then all remaining rows must be OO, so as k ranges from 1 to
n − 1, there are n − 1 such partitions. Adding, the total number of partitions of an
n× 2 rectangle with top row XX is 2(n2 − 2n+ 1) + (n− 1) = 2n2 − 3n+ 1.

Adding the number of partitions with top row XO and XX found in the previous
two paragraphs, we find that the total number of partitions into two connected sets is
2n2 − n.

While the number Con(n) of nonempty connected sets in an n× 2 rectangle grows
exponentially with n, the number of partitions into two connected sets grows quadrati-
cally. Table 3 gives some of the numbers p2(n). A direct combinatorial proof showing
that these are the hexagonal numbers (A000384 in [7]) would be of interest.

Partitions of an n× 2 rectangle into 3 connected sets
In this section, we prove the following result.
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n 1 2 3 4 5 6 7 8 9 10 11 12
p2(n) 1 6 15 28 45 66 91 120 153 190 231 276

Table 3. The number p2(n) of partitions of an n× 2 rectangle into two connected sets.

Proposition 8. If n ≥ 2, an n× 2 rectangle can be partitioned into three connected
sets in p3(n) = (4n4 − 8n3 + 11n2 − 13n+ 6)/6 ways.

Table 4 shows the values of p3(n) for n = 2 to 12.

n 2 3 4 5 6 7 8 9 10 11 12
p3(n) 4 29 107 286 630 1219 2149 3532 5496 8185 11759

Table 4. The number p3(n) of partitions of an n× 2 rectangle into three connected sets.

Proof. Suppose an n× 2 rectangle R is partitioned into three sets A,B,C . Without
loss of generality, we will let A be the set containing the upper left corner of R and let
B be the second set encountered. Then the first row must be AB or AA.

Case 1: The first row of R is AB and no subsequent row is AA, so A is a k × 1 set
for some k with 1 ≤ k ≤ n.

If the kth row is AC, then the bottom n− k rows must be CC, and B is a j × 1
set to the right of A for some j = 1 to k − 1, as depicted on the left in Figure 4. Then
A,B, and C are determined by the k positions for the bottom of A and k − 1 positions
for the bottom of B. There are

∑n
k=1(k − 1) = (n2 − n)/2 such partitions.

If the kth row is AB, as seen on the right in Figure 4, then 1 ≤ k ≤ n− 1 (for k =
n would imply C = ∅), and the bottom n− k rows contain no As. Either the bottom
n− k rows are all Cs, or the bottom n− k rows are partitioned into two connected B
and C. By Proposition 7, there are 2(n− k)2 − (n− k) ways to partition the bottom
n− k rows into two sets. Adding the one way to partition them into one set C and sum-
ming over k = 1 to n− 1, we see that there are

∑n−1
k=1 (2(n− k)2 − (n− k) + 1) =

(4n3 − 9n2 + 11n− 6)/6 such sets.
Adding the options from the two paragraphs above, there are (2n3 − 3n2 + 4n−

3)/3 partitions in Case 1.

A B

C

6

?

k

6

?

j
6

?

k

A B

B

} n− k rows
partitioned into 1 or 2 sets

Figure 4. Case 1: partitions of an n× 2 rectangle into three sets if A is a k × 1 set.

Case 2: The first row of R is AB and there is a subsequent row AA after the initial
row AB. Suppose the first row which is AA is the (k + 1)st row (1 ≤ k ≤ n− 1).
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k − 1 A B

A
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k

6

?

n− k

Figure 5. Case 2: partitions of an n × 2 rectangle with initial row AB and first AA at row
k + 1.

If row k is AC, as shown on the left in Figure 5, then 2 ≤ k ≤ n− 1, rows k + 1
through n must all be AA, and B ∪ C is a k × 1 rectangle. In particular, B is a j × 1
rectangle for some j = 1 to k − 1. Summing, there are

∑n−1
k=2(k − 1) = (n2 − 3n+

2)/2 such partitions.
If row k is AB, as shown on the right in Figure 5, then B is a k × 1 rectangle,

and k ≤ n− 2. Removing the top k rows leaves an (n− k)× 2 rectangle with first
row AA which is partitioned into A ∪ C. From the third paragraph of the proof of
Proposition 7, there are 2(n − k)2 − 3(n − k) + 1 ways to form such a partition.
Summing as k goes from 1 to n− 2 gives (4n3 − 15n2 + 17n− 6)/6 such partitions.

Adding the options from the two paragraphs above, there are (2n3 − 6n2 + 4n)/3
partitions in Case 2.
Case 3: The first row of R is AA.
Let us assume the first k rows (1 ≤ k ≤ n− 1) are AA and the (k + 1)st row is not
AA.

If the (k + 1)st row does not contain an A, then the bottom n− k rows are parti-
tioned by B ∪ C. By Proposition 7, there are 2(n − k)2 − (n − k) such partitions,
and summing as k goes from 1 to n− 1 gives (4n3 − 9n2 + 5n)/6 such partitions.

If the (k + 1)st row does contain an A, then k ≤ n− 2 and the bottom n− k rows
give an (n − k) × 2 rectangle with top row AB or BA which must be partitioned
into three sets. Such partitions were counted in Cases 1 and 2. Combining the totals
in those two cases for a rectangle of height n − k, we find that this can be done in
(4(n − k)3 − 9(n − k)2 + 8(n − k) − 3)/3 ways. Summing as k goes from 1 to
n− 2 and doubling, to account for the equal number starting from BA, we find that
there are (2n4 − 10n3 + 19n2 − 17n+ 6)/3 such partitions.

Adding the options from the two paragraphs above, there are (4n4 − 16n3 +
29n2 − 29n+ 12)/6 partitions in Case 3.

Combining Cases 1, 2, and 3, we find that there are (4n4 − 8n3 + 11n2 − 13n+
6)/6 partitions of an n× 2 rectangle into three connected sets, proving Proposition 8.

Areas for further study
Counting connected subsets of an n × 2 pixelated rectangle and partitions of such
a rectangle into connected sets leads to some interesting sequential patterns and re-
cursively generated sequences. These initial studies suggest many opportunities for
further investigation and discovery.

A general formula for the number of partitions of an n ×m pixelated rectangle
into k connected subsets is not known to us, and would be welcomed. Already for
m = 3, the row-by-row techniques presented here become difficult, since the tables
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corresponding to those of Table 1 would have 23 − 1 = 7 columns for possible bottom
rows.

In our enumeration above of partitions of n × 2 rectangles into three connected
sets, it would be an easy step to count the labeled partitions, say into one black, one
red, and one yellow set. Once a partition into 3 sets is found, there are 3! = 6 ways to
label the three sets, so there are 6 times as many labeled partitions.

A more difficult question would be to enumerate the symmetry classes of the con-
nected sets or connected partitions. For example, among the p3(3) = 29 partitions of a
3× 2 rectangle into three connected sets shown in Figure 6, observe that the first four
are obtained through rigid motions of the first, and thus constitute a single symmetry
class.

Figure 6. The p3(3) = 29 partitions of a 3× 2 rectangle into three connected sets, grouped
by symmetry classes.

The group of symmetries of a rectangle has four elements, or actions: rotations of
0◦ and 180◦, and reflections through vertical and horizontal lines. Applying the four
actions of this group to a partition into three sets will not result in four distinct parti-
tions if the partition already shows some symmetry, that is, if the partition is invariant
under some of the actions. Recall that if G is a group of permutations of a set S, the
permutations in G that leave a subset of S invariant is a subgroup of the group of G,
and the order of a subgroup divides the order of the group. Thus, a partition of an
n× 2 rectangle may remain invariant under 1, 2, or 4 of the symmetries of the rect-
angle. If only the identity permutation leaves the partition fixed, the symmetry class
will have 4 elements. If two actions in the group of symmetries of the rectangle leave
the permutation fixed, the symmetry class will have two elements, and if all four ac-
tions leave the partition fixed, the symmetry class has only one element. In Figure 6,
the 29 permutations are grouped into their 10 symmetry classes.

For a 3 × 2 rectangle, a visual check shows that among the Con(3) = 40 con-
nected sets, there are 15 symmetry classes; among the p2(3) = 15 partitions into two
connected sets, there are 6 symmetry classes; among the p3(3) = 29 partitions into
to three connected sets, there are 10 symmetry classes. Formulas for the number of
symmetry classes are not known to us.

Besides these questions of an algebraic flavor, the topic suggests further investiga-
tion into connections with continued fractions and with generating functions [8].

Summary: Suppose an n ×m grid is printed on an n ×m note card. Cutting only
along grid lines, in how many ways may a connected piece be cut from the card?
In how many ways may the card be cut into two connected pieces? Three connected
pieces? We answer these questions for m = 2 using recurrence relations.
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