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Abstract. Several naturally defined lower separation axioms for bitopological spaces obtained

by modifying the axioms T0, T1, and R0 appear in the literature. We introduce and study

analogous separation axioms for bitopogenous spaces. In particular, we investigate relationships
between the axioms and discuss the conditions under which the relationships are similar to those

between the corresponding separation axioms for bitopological spaces.

1. Introduction

Topogenous orders were introduced by Császár [2] to give a unified study of topologies, unifor-
mities, and proximities. A topogenous order on a set X is nothing but a binary relation on the
power set of X subject to certain axioms. With every topology τ on a set X, we may associate a
topogenous order @ on X by putting A @ B if and only if µA ⊆ B, where µ is the Kuratowski
closure operator given by τ . In the same way, we may associate binary relations (more general
than topogenous orders) with closure operators more general than the Kuratowski ones. This was
done, for categorical closure operators, in [6] to study categorical quasi-uniformities. In [13], binary
relations (preorders) ρ are studied that are associated with closure operators µ by putting AρB if
and only if A ⊆ µB, hence “dually” to associating topogenous orders. An analogous approach is
used in [14] to associate preorders with closure operators on posets.

Lower separation axioms play a significant role in applications of topology to computer science.
Machine calculations and graphic displays are based on finite sets and thus cannot be adequately
modeled by a Hausdorff topology. A bitopogenous space consists of a set and a pair of topogenous
orders on this set. The study of bitopogenous spaces includes the study of bitopological spaces.
Ordered topological spaces have form (X, τ, <∼ ) where τ is a topology on X and <∼ is a quasiorder
on X. There is a one-to-one correspondence between quasisorders on X and Alexandroff topologies
(that is, topologies closed under formation of arbitrary intersections) on X given by x <∼ y if and
only if x ∈ cl{y} (see [16]). Thus, an ordered topological space (X, τ, <∼ ) may be viewed as a
bitopological space (X, τ, τ <∼

) and thus as a bitopogenous space. A partially ordered topological

space (X, τ,≤) has an associated bitopological space (X, τ ], τ [) where τ ] = {V ∈ τ : ↑ V = V }
and τ [ = {V ∈ τ : ↓V = V }, showing another connection between ordered topological spaces and
bitopogenous spaces. (As usual, if P is a poset and A ⊆ P , ↑ A = {y : y ≥ a for some a ∈ A},
with ↓ A defined dually.)

2. Preliminaries

Consider the following conditions which a binary relation @ on the power set P(X) of a given
set X might satisfy:

(S1) ∅ @ ∅, X @ X.
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(S2) A @ B implies A ⊆ B.
(S3) A ⊆ A′ @ B′ ⊆ B implies A @ B.
(S4) A @ B and A′ @ B′ imply A ∩A′ @ B ∩B′ and A ∪A′ @ B ∪B′.
(S5) A @ B implies there exists C ⊆ X with A @ C @ B.

Following Császár’s terminology [2], a relation @ on P(X) satisfying (S1), (S2), and (S3) is
called a semi-topogenous order on X and, if it also satisfies (S4), then it is called a topogenous
order on X. The pair (X,@) where X is a set and @ is a (semi-)topogenous order is called a
(semi-)topogenous space. A bitopogenous space is a triple (X,@1,@2) where X is a set and @1

and @2 are topogenous orders on X. If a topogenous order @ on X satisfies the “interpolating
property” (S5), then we will call it a syntopogenous order and the pair (X,@) will be called a
syntopogenous space. (In [2], syntopogenous orders are called simple syntopogenous structures and,
instead of syntopogenous spaces, the concept of topogenous spaces is used.) We will often write
x @ B for {x} @ B.

Note that a semi-topogenous order is transitive but need not be reflexive or antisymmetric, even
if it is a syntopogenous order. Given an element x ∈ X, we put ↑@ x = {U ⊆ X : x @ U}. Note
that we always have x @ X.

If @ is a topogenous order on X, its complementary topogenous order @c (on X) is defined by

A @c B ⇐⇒ X −B @ X −A.

A motivating example of a syntopogenous order @τ on a set X arises from a topology τ on X in
the following way: A @τ B if and only if A ⊆ intτB (where intτ denotes the interior operator given
by τ). The complementary topogenous order to @τ is given by A @cτ B if and only if clτA ⊆ B
(where clτ denotes the closure operator given by τ).

A (semi-)topogenous order @ is perfect if Ai @ Bi for all i ∈ I implies
⋃
i∈I Ai @

⋃
i∈I Bi. If τ

is a topology, it is easy to see that @τ is a perfect topogenous order. Indeed, the perfect condition
is designed to model the idea that arbitrary unions of open sets are open. Note that @cτ is perfect
if and only if τ is an Alexandroff topology.

Given a set X, we denote by TOPOGEN(X) the set of all topogenous orders on X partially
ordered by set inclusion. For topogenous orders @ and @′, Császár [2] shows that @ ∨ @′ = @q

where A @q B if and only if A =
⋃m
i=1(Ai∩A′i), B =

⋃m
i=1(Bi∩B′i) where Ai @ Bi and A′i @

′ B′i for
i = 1, . . . ,m. The meet of any nonempty collection of topogenous orders is their intersection, and
inclusion is the largest topogenous order on X. Thus, TOPOGEN(X) forms a complete lattice.

3. Semi-topogenous orders and closure operators

Recall that a Kuratowski closure operator on X is a function cl : P(X)→ P(X) which is
grounded: cl∅ = ∅,
extensive: A ⊆ clA for all A ⊆ X,
monotonic: A ⊆ B ⊆ X ⇒ clA ⊆ clB,
additive: cl(A ∪B) = clA ∪ clB for all A,B ⊆ X, and
idempotent: cl(cl(A)) = clA for all A ⊆ X.

It is common to consider closure operators that are more general than the Kuratovski ones,
hence not satisfying all of these conditions (which are not independent, since additivity implies
monotonicity). In this note, in accordance with [14], closure operators are only required to be
extensive, monotonic and idempotent. Given a semi-topogenous order @ on a set X, we put

cl@(A) = {x ∈ X : ↑@ x ⊆
⋃
a∈A
↑@ a}

for every A ⊆ X.
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Theorem 3.1. For every semi-topogenous order @ on a set X, the function cl@ : P(X)→ P(X)
is a grounded closure operator on X.

Proof. We only show that cl@ is idempotent. The other properties follow easily from the definitions.
Suppose x ∈ cl@(cl@(A)). Then ↑@ x ⊆

⋃
c∈cl@(A) ↑@ c, so x @ U ⇒ c @ U for some c ∈ cl@(A).

But c ∈ cl@(A) ⇒↑@ c ⊆
⋃
a∈A ↑@ a, so c @ U ⇒ a @ U for some a ∈ A. Thus, x @ U ⇒ a @ U

for some a ∈ A, so ↑@ x ⊆
⋃
a∈A ↑@ a and hence x ∈ cl@(A). The converse, cl@(A) ⊆ cl@(cl@(A)),

follows since cl@ is extensive. �

Császár ([2], pp. 212–219) defined Kuratowski closure operators associated with syntopogenous
orders. Extending his definition to semi-topogenous orders, we get a grounded closure operator
clCs on X associated with a semi-topogenous order @ on a set X in the following way: for A ⊆ X,

clCs(A) = {x : x @ U ⇒ U ∩A 6= ∅}.

It is easy to see that cl@(A) ⊆ clCs(A) for any A ⊆ X. The following example shows that the two
closure operators are not equal in general.

Example 3.2. Given a fixed ε > 0, on R, define A @ε B if and only if the ε-fattening of A is
contained in B, that is, if and only if a ∈ A⇒ (a− ε, a+ ε) ⊆ B. It is easy to check that @ε is a
topogenous order satisfying (S1)–(S4). Taking A = {0} @ε (−ε, ε) = B, we see that (S5) fails, so
@ε is not a syntopogenous order.

Let ε = 1/2. Then cl@{1} = {x : x @1/2 U ⇒ 1 @1/2 U} = {1}. Using Császár’s closure,
clCs{1} = {x : x @1/2 U ⇒ 1 ∈ U} = (1/2, 3/2).

Remark 3.3. It is easy to see that, for every topology τ , cl@τ agrees with clτ .

The lemma below gives a characterization of point closures which will be useful in working with
lower separation axioms.

Theorem 3.4. If @ is a semi-topogenous order on X and x, y ∈ X, then

y ∈ cl@{x} ⇐⇒ y 6@ X − {x}.

Proof. (⇒) : Suppose y ∈ cl@{x}, so ↑@ y ⊆↑@ x. If y @ X − {x}, then X − {x} ∈ ↑@ y ⊆↑@ x,
which gives x @ X − {x}, contradicting (S2).

(⇐) : y 6@ X − {x} ⇒ y 6@ V for each V ⊆ X − {x} by (S3)

⇒ (y @ V ⇐⇒ V = X)

⇒ ↑@ y = {X} ⊆↑@ x

⇒ y ∈ cl@{x}.

�

Any topogenous order @ on X gives a topology on X (see [3]) defined by

T@ = {U ⊆ X : x ∈ U ⇒ x @ U}.

Thinking of ↑@ x as the neighborhood filter of x, this corresponds to the statement that U is
open if and only if it is a neighborhood of each of its points. It is easy to see that if @ is perfect,
then T@ = {U ⊆ X : U @ U}. The example below shows that when @ is not perfect, U may be
open in T@ even if U 6@ U .
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Example 3.5. On R, define A @ B if and only if A ⊆ B and A is finite or B = R. It is easy to
see that @ is a syntopogenous order on R. However, @ is not perfect: {x} @ [0, 2] for all x ∈ [0, 1],
but [0, 1] =

⋃
x∈[0,1]{x} 6@ [0, 2]. It is easy to see that T@ = P(R). The set U = (0, 1) is T@-open

but U 6@ U .
We further note that A = cl@(A) for all A ⊆ R. Indeed, if x ∈ cl@(A), then U = {x} ∈ ↑@ x so

there exists a ∈ A with U = {x} ∈ ↑@ a. Thus, a @ {x}, so {a} ⊆ {x} and x = a ∈ A.
It follows that, in this example, U ∈ T@ ⇐⇒ cl@(R− U) = R− U .

Burgess and Fitzpatrick [1] define, in a more general setting, a preorder <∼ on X by x <∼ y ⇐⇒
x 6@ X − {y}, or by Theorem 3.4, x <∼ y ⇐⇒ x ∈ cl@{y}. They require (an analog) of the
interpolative property (S5) and do not seem to address any of the questions we consider.

4. The T0 separation axiom

The following definition may be found in [2].

Definition 4.1. A semi-topogenous space (X,@) is T0 if for distinct points x, y, we have x @
X − {y} or y @ X − {x}.

The bitopogenous definitions below generalize the corresponding bitopological definitions, which
are discussed in [8].

Definition 4.2. A bitopogenous space (X,@1,@2) is called

(a) weak pairwise T0 if for distinct points x and y,

[x @1 X − {y} ∨ y @2 X − {x}] ∨ [y @1 X − {x} ∨ x @2 X − {y}],
(b) pairwise T0 if for distinct points x and y,

[x @1 X − {y} ∨ y @2 X − {x}] ∧ [y @1 X − {x} ∨ x @2 X − {y}].

The condition on distinct points x 6= y used in the definition of pairwise T0 could be simplified
to [x @1 X − {y} ∨ y @2 X − {x}] since x 6= y implies y 6= x. We used the long form to contrast
it with weak pairwise T0 space.

If (X,@1,@2) is a bitopogenous space and P is some separation axiom, the property of (X,@1,
@2) being pairwise-P is defined case-by-case, typically involving some interaction between @1 and
@2. Following the terminology for bitopological spaces in Lal [7], we say a bitopogenous space
(X,@1,@2) is

bi-P if each of the spaces (X,@1) and (X,@2) is P , and
sup-P if the space (X,@1 ∨ @2) is P .

Below we will consider possible implications between sup-P , pairwise-P , and bi-P for various
separation axioms P applied to a bitopogenous space.

Theorem 4.3. If (X,@1,@2) is a bitopogenous space, the following implications hold.

pairwise T0 ⇒ weakly pairwise T0 ⇐⇒ sup T0.

⇓
bi T0

=⇒

Proof. The only implication which does not follow immediately from the definitions is sup T0 ⇒
weakly pairwise T0. Suppose (X,@1,@2) is sup T0 and @1 ∨ @2 = @q. Then for x 6= y, x @q

X − {y} or y @q X − {x}. Suppose x @q X − {y}. Then from the characterization of @q, we
have {x} =

⋃m
i=1(Ai ∩ A′i) and X − {y} =

⋃m
i=1(Bi ∩ B′i) where Ai @1 Bi and A′i @2 B

′
i for all

i ∈ {1, . . . ,m}. It follows that Ai ∩A′i ⊆ {x} for all i and Aj ∩A′j = {x} for some j ∈ {1, . . . ,m}.
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Furthermore, y 6∈ Bj ∩ B′j . Suppose y 6∈ B′j . Then {x} ⊆ A′j @2 B
′
j ⊆ X − {y}, so x @2 X − {y},

which shows (X,@1,@2) is weakly pairwise T0. The other three cases are similar. �

5. The T1 separation axiom

Definition 5.1. A semi-topogenous space (X,@) is T1 if for distinct points x, y, we have x @
X − {y} (and y @ X − {x}).

A semi-topogenous space (X,@) is T1 if y @c y for all y: For x 6= y, {x} ⊆ X − {y} @ X − {y},
so x @ X − {y}. The converse holds if @ is perfect: If @ is T1 and perfect, y @c X − {x} for all
x 6= y gives y @c

⋂
x 6=yX − {x} = {y}, so y @c y.

The various bitopogenous definitions below generalize the corresponding bitopological definitions
from [12, 15, 11], as discussed in [8].

Definition 5.2. A bitopogenous space (X,@1,@2) is called

(a) Reilly pairwise T1 if for distinct points x and y,

x @1 X − {y} ∧ y @2 X − {x}.

(b) weak pairwise T1 if for distinct points x and y,

(x @1 X − {y} ∧ y @2 X − {x})
∨

(x @2 X − {y} ∧ y @1 X − {x}).

(c) MN pairwise T1 if for distinct points x and y,

x @1 X − {y} ∨ x @2 X − {y}.

Lemma 5.3. A semi-topogenous space (X,@) is T1 if and only if cl@{x} = {x} for each x ∈ X.

Proof. If @ is T1 and x 6= y, then y @ X − {x} and Theorem 3.4 implies y 6∈ cl@{x}, so cl@{x} =
{x}. If cl@{x} = {x} for every x, then for x 6= y, we have y 6∈ cl@{x} and x 6∈ cl@{y}, and applying
Theorem 3.4 shows @ is T1. �

It is easy to see that the following implications are the only implications which hold between
the various forms of pairwise T0 and T1.

Reilly pairwise T1 =⇒ pairwise T0

⇓ =⇒

weak pairwise T1

⇓
MN pairwise T1 =⇒ weak pairwise T0

We will employ the following basic result:

Theorem 5.4. If τ1 and τ2 are topologies on X, then the topogenous orders @τ1 ,@τ2∈ TOPOGEN(X)
satisfy @τ1 ∨ @τ2 = @τ1∨τ2 .

Proof. Let @q =@τ1 ∨ @τ2 and τ3 = τ1 ∨ τ2.
If A @q B, then A =

⋃m
i=1(Ai∩A′i), B =

⋃m
i=1(Bi∩B′i) where Ai ⊆ int1Bi and A′i ⊆ int2B′i for

i = 1, . . . ,m. For j = 1, 2, intjB ⊆ int3B, so we have Ai ∩A′i ⊆ int3Bi ∩ int3B′i ⊆ int3(Bi ∩B′i).
Thus, A =

⋃m
i=1(Ai ∩A′i) ⊆

⋃m
i=1 int3(Bi ∩B′i) ⊆ int3

⋃m
i=1(Bi ∩B′i) = int3B, so A @3 B.

Conversely, if A @3 B, then there exists an τ3-open set C with A ⊆ C ⊆ B. Since τ3 = τ1 ∨ τ2,
C =

⋃m
i=1(Ui ∩ Vi) where Ui ∈ τ1, Vi ∈ τ2 for all i. Let Ai = A ∩ Ui, A′i = A ∩ Vi, Bi = B ∪ Ui,

B′i = B∪Vi. Now Ai ⊆ Ui ⊆ Bi shows Ai @1 Bi and similarly A′i @2 B
′
i. Since A =

⋃m
i=1(Ai∩A′i)

and B =
⋃m
i=1(Bi ∩B′i), we have A @q B. �
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Example 5.5. Let X be a set and TOP (X) be the lattice of topologies on X. The subposet
S = {@τ : τ ∈ TOP (X)} of TOPOGEN(X) is not lattice isomorphic to TOP (X), even though
∧ = ∩ in both TOP (X) and S ⊆ TOPOGEN(X). Specifically,

@τ1∧τ2 6= @τ1 ∧ @τ2 .
On X = {1, 2, 3, 4}, let τ1 and τ2 be the topologies generated by the bases B1 = {{1, 2}, {3, 4}}
and B2 = {{1}{2, 3}, {4}}, respectively. Now {3} ⊆ inti{2, 3, 4} for i = 1, 2, so 3 @τi {2, 3, 4}
for i = 1, 2. Thus, with @ = @τ1 ∩ @τ2 , we have 3 @ {2, 3, 4}. However, τ1 ∧ τ2 = {∅, X}, so
3 6@τ1∧τ2 {2, 3, 4} since {3} 6⊆ ∅ = intτ1∧τ2{2, 3, 4}.

If X has at least three points and p ∈ X, the particular point topology {U ∈ X : p ∈ U} ∪ {∅}
and the excluded point topology {U ∈ X : p 6∈ U}∪{X} give topogenous orders with x @p X−{y}
if and only if y 6= p and x @e X−{y} if and only if y = p when x and y are distinct. By Theorem 5.4,
@p ∨ @e corresponds to the discrete topology, which is T1. Now with x 6= y in X − {p}, we see
(X,@p,@e) is MN T1 but not weak pairwise T1. In particular, sup-T1 6⇒ weak pairwise T1.

Theorem 5.6. For a bitopogenous space (X,@1,@2),
bi-T1 ⇐⇒ Reilly pairwise T1 and MN pairwise T1 ⇐⇒ sup-T1.

Proof. The first equivalence follows from the definitions. Since @1 ∪ @2 ⊆ @1 ∨ @2, it follows that
MN pairwise T1 implies sup-T1. The converse follows by repeating the proof of Theorem 4.3. �

6. The R0 separation axiom

The R0 topological condition, introduced by Davis [4], is useful because a topological space
(X, τ) is T1 if and only if it is T0 and R0.

Recall that a topological space (X, τ) is R0 if it satisfies any one of the following equivalent
conditions.

(a) If F is a closed set and x 6∈ F , then there exists an open set U with F ⊆ U and x 6∈ U .
(b) If U is an open set and x ∈ U , then cl{x} ⊆ U .
(c) {cl{x} : x ∈ X} is a partition of X.

The equivalence of these statements (and six others) may be found in [4] and [5] (see [8]).

Example 6.1. If (X, τ) is R0 and τ ′ is coarser or finer than τ , then τ ′ need not be R0. Let
X = {1, 2} and τ = {∅, {2}, {1, 2}}. Now {cl{x} : x ∈ X} = {{1}, {1, 2}} is not a partition of
X so by (c), τ is not R0. Again using (c), it is easy to see that the discrete topology τd and the
indiscrete topology τi on X are R0. Since τi ⊆ τ ⊆ τd, this shows the result.

The defining conditions (a)–(c) above may be interpreted in the (semi)-topogenous setting as
follows:

(a′) For every x ∈ X and every U ⊆ X, if x @ U then there exists V ⊆ X − {x} such that
X − U @ V .

(b′) For every x ∈ X and every U ⊆ X, if x @ U then x @c U , that is, for all x ∈ X, ↑@x ⊆ ↑@c x.

(c′) {cl@{x} : x ∈ X} is a partition of X.
Since we hope T0 and R0 together will imply T1 in the topogenous setting, the example below

shows that (a′) and (b′) are generally not a suitable way to define R0 in a topogenous space.

Example 6.2. On R, define a syntopogenous order by A @ B if and only if A ⊆ B and A is
finite or A = R, as in Example 3.5. Then the syntopogenous space (R,@) is T1. Furthermore,
1 @ U = [0, 2] but R−U @ V if and only if V = R 6⊆ R−{x}, so @ does not satisfy condition (a′).
Also, 1 6@c [0, 2] since R− [0, 2] 6@ R− {1}, so @ does not satisfy condition (b′). Significantly, note
that @ is not perfect.
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Theorem 6.3. Suppose (X,@) is a semi-topogenous space, conditions (a′), (b′), (c′) are as given
above, and (c′′) is the condition that, for all x, y ∈ X, we have x ∈ cl@{y} ⇒ y ∈ cl@{x}. Then

(a′) ⇐⇒ (b′) =⇒ (c′) ⇐⇒ (c′′).

Furthermore, all these conditions are equivalent if (X,@) is perfect.

Proof. Suppose @ satisfies (a′). Now x @ U implies that there exists V ⊆ X such that X − U @
V ⊆ X − {x}, so by (S3), X − U @ X − {x}, or x @c U . Thus (a′)⇒ (b′). Conversely, suppose @
fails condition (b′). Then there exist x ∈ X and U ⊆ X such that x @ U , yet X − U 6@ X − {x}.
Then X − U 6@ V for any V ⊆ X − {x}, so @ fails condition (a′). Thus, (a′) ⇐⇒ (b′).

Suppose @ satisfies (b′) and y 6∈ cl@{x}. By Theorem 3.4, y @ X−{x}, and by (b′), x @ X−{y}.
Now Theorem 3.4 gives x 6∈ cl@{y}. Thus, @ satisfies (c′).

Suppose (X,@) satisfies condition (c′) and x ∈ cl@{y}. Now {x} ∈ cl@{x} ∩ cl@{y} implies
cl@{x} = cl@{y}, so y ∈ cl@{x} and (X,@) satisfies (c′′). Conversely, suppose @ satisfies (c′′) and
z ∈ cl@{x} ∩ cl@{y}. Then z ∈ cl@{x} ⇒ x ∈ cl@{z}, so we have ↑@ z ⊆ ↑@ x ⊆ ↑@ z, and thus
cl@{x} = {w : ↑@ w ⊆ ↑@ x} = {w : ↑@ w ⊆ ↑@ z} = cl@{z}. Similarly, cl@{y} = cl@{z}, so
cl@{x} ∩ cl@{y} 6= ∅ ⇒ cl@{x} = cl@{y}. Clearly each cl@{x} is nonempty and the union of such
point-closures is X. Thus, (c′) ⇐⇒ (c′′).

Finally, suppose @ is perfect and satisfies (c′′) and x @ U . For any y 6∈ U , we have U ⊆ X−{y}
so x @ X − {y}. Applying (c′′) and Theorem 3.4, we have y @ X − {x}. Since @ is perfect, it
follows that X − U =

⋃
y∈X−U{y} @ X − {x}, so @ satisfies (b′). �

We take conditions (c′′) as our definition of R0.

Definition 6.4. A semi-topogenous space (X,@) is R0 if and only if x ∈ cl@{y} ⇒ y ∈ cl@{x}
whenever x, y ∈ X.

The next theorem shows that our definition does what it should.

Theorem 6.5. A semi-topogenous space (X,@) is T1 if and only if it is R0 and T0.

Proof. Suppose (X,@) is R0 and T0 and x 6= y. Say x @ X − {y} = U . Then X − {y} ∈ ↑@ x but
by (S2), X − {y} 6∈ ↑@ y. Thus ↑@ x 6⊆ ↑@ y, so x 6∈ cl@{y}. By R0, y 6∈ cl@{x}. By Theorem 3.4,
y 6∈ cl@{x} ⇒ y @ X − {x} which completes the proof that @ is T1.

Now suppose (X,@) is T1. Clearly it is T0, and Lemma 5.3 shows it is R0. �

In [8], nine conditions equivalent to the topological R0 condition were given, and it was noted
that none had direct analogs to both the ordered topological setting and the bitopological setting.
That fact prompted the reconsideration of the standard definition of T1-ordered, and subsequently,
of R0-ordered in [8]. Among the seven equivalent conditions Misra and Dube [9] give to define
pairwise R0 in the bitopological setting, we have selected the following convenient condition, which
extends properly to the topogenous setting: A bitopological space (X, τ1, τ2) is pairwise R0 if and
only if y ∈ clτ1(x) ⇐⇒ x ∈ clτ2(y) for all x, y ∈ X.

Definition 6.6. A bitopogenous space (X,@1,@2) is pairwise R0 if, for all x, y ∈ X,

x ∈ cl@1
{y} ⇐⇒ y ∈ cl@2

{x}.

Definition 6.6 and all the remaining results of this section hold for “bi-topogenous” spaces
(X,@1, @2) where @1 and @2 are only semi-topogenous orders, with the exception of the results
below concerning @1 ∨ @2 = @q, where this supremum is taken among topogenous orders instead
of semi-topogenous orders.

Suppose (X, τ,≤) is a partially ordered topological space and τ [, τ ] are as defined in Section 1.
Following the notation of [8], I(A) = clτ[(A), D(A) = clτ](A), and C(A) = I(A) ∩ D(A). Now
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(X, τ [, τ ]) is pairwise R0 if x ∈ I(y) = clτ[{y} ⇐⇒ y ∈ D(x) = clτ]{x}, and it is easy to see that
x ∈ C(y) if and only if y ∈ C(x), so by Definition 12 of [8], this is equivalent to (X, τ,≤) being
RK0 -ordered, which is Künzi’s version of ordered R0 and plays a role in characterizing those ordered
topological spaces whose Wallman ordered compactifications are not only T1, but also satisfy an
ordered version of the T1 property (namely, Künzi’s TK1 -ordered property). This discussion suggests
the following result, which is easy to prove. (Compare Theorem 13 of [8].)

Theorem 6.7. Suppose (X,@1,@2) is a bitopogenous space and C(x) = cl@1(x) ∩ cl@2(x). Then
the following are equivalent.

(a) (X,@1,@2) is pairwise R0.
(b) y ∈ C(x) ⇐⇒ x ∈ C(y).
(c) {C(x) : x ∈ X} is a partition of X.

(X,@1,@2) being pairwise R0 is independent of (X,@1) and (X,@2) being R0. That is, pairwise
R0 neither implies nor is implied by bi-R0. For example, let @i and @d be, respectively, the
topogenous orders from the indiscrete and discrete topologies on R. Now (R,@i) and (R,@d) are
both R0, but x ∈ cl@2

{y} = R 6⇒ y ∈ cl@1
{x} = {x}.

Theorem 5.8 in [9] shows that if a bitopololgical space (X, τ1, τ2) is pairwise-R0 and τ1 ⊆ τ2,
then τ2 is R0. The proof given there does not carry over directly, but the corresponding result still
holds:

Theorem 6.8. If a bitopogenous space (X,@1,@2) is pairwise-R0 and @1⊆@2, then @2 is R0.

Proof. A direct application of the definitions shows that if @1⊆@2, then cl@2{x} ⊆ cl@1{x}
for all x ∈ X. Thus, under the hypothesis, C(x) = cl@2(x) for all x ∈ X. By Theorem 6.7,
{cl@2

{x} : x ∈ X} is a partition of X, so @2 is R0. �

We note that if a bitopolgoical space (X, τ1, τ2) is pairwise R0 then it is sup-R0, that is, (X,
τ1 ∨ τ2) is R0 (Proposition 9 of [10]).

Theorem 6.9. For a bitopogenous space (X,@1,@2),

bi-R0 ⇒ pairwise R0 ⇒ sup-R0,

and no other implications hold between these three properties.

Proof. Suppose (X,@1,@2) is bi-R0. Applying Theorem 6.7, we have y ∈ C(x) ⇐⇒ (y ∈
cl@1

(x) ∧ y ∈ cl@2
(x)) ⇐⇒ (x ∈ cl@1

(y) ∧ x ∈ cl@2
(y)) ⇐⇒ x ∈ C(y), so (X,@1,@2) is pairwise

R0.
Suppose (X,@1,@2) is pairwise R0, @q =@1 ∨ @2, and x @q X − {y}. We wish to show

y @q X−{x}. From the characterization of @q given in [2], we have that {x} =
⋃m
i=1(A1

i ∩A2
i ) and

X−{y} =
⋃m
i=1(B1

i ∩B2
i ) where A1

i @1 B
1
i and A2

i @2 B
2
i for all i = 1, . . . ,m. Now {x} ∈ A1

i ∩A2
i

and y 6∈ B1
i ∩B2

i for all i = 1, . . . ,m. Thus, for any i, we have
y 6∈ B1

i or y 6∈ B2
i

{x} ⊆ A1
i @1 B

1
i ⊆ X − {y} or {x} ⊆ A2

i @2 B
2
i ⊆ X − {y}

x @1 X − {y} or x @2 X − {y}
and applying the pairwise R0 condition,

C2
i ≡ {y} @2 X − {x} ≡ D2

i or C1
i ≡ {y} @1 X − {x} ≡ D1

i

C1
i ≡ {y} @1 X ≡ D1

i C2
i ≡ {y} @2 X ≡ D2

i .

This gives, for any i = 1, . . . ,m, sets C1
i @1 D1

i and sets C2
i @2 D2

i with C1
i ∩ C2

i = {y} and
D1
i ∩D2

i = X − {x}. Now {y} =
⋃m
i=1(C1

i ∩ C2
i ) @q

⋃m
i=1(D1

i ∩D2
i ) = X − {x}, so @q is R0.

The counterexamples that follow complete the proof. �
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Example 6.10. sup-R0 does not imply pairwise R0. Let I1 = (0, 1), I2 = (2, 3), X = I1 ∪ I2, and
let τ1 be the right ray topology restricted to (X,≤) ⊆ (R,≤). Let τ2 be the left ray topology on
(X,≤′) where ≤′ restricted to Ij is the usual order from the real line, but with I2 < I1. Open and
closed sets in τ1 and τ2 are shown in bold in the following figure.

(
(τ1

]

(

τ2

]

(
]

]

open sets closed sets

0           1            2           3 0           1            2           3

Define A @i B if and only if A ⊆ intτiB for i = 1, 2. By Remark 3.3, cl@i = clτi . For y = .5 and
x = 1.5, we have y ∈ cl@2

(x) but x 6∈ cl@1
(y), so (X, τ1, τ2) is not pairwise R0.

Now τ1 ∨ τ2 is the Euclidean topology E , so cl@1∨@2
= clE by Theorem 5.4 and Remark 3.3.

Thus, x ∈ clE{y} ⇐⇒ y ∈ clE{x}, so (X, τ1, τ2) is sup-R0.

Example 6.11. sup-R0 does not imply bi-R0. Let @i be defined by A @i B if and only if A ⊆
intτiB where τ1 = {∅, {1}, {1, 2}} and τ2 = {∅, {2}, {1, 2}}. Now A @1 B for every A ⊆ B ⊆ {1, 2}
except A = B = {2}, and since {2} @2 {2}, with @q = @1 ∨ @2, we have A @q B if and only if
A ⊆ B. Thus, x @q X − {y} ⇐⇒ x 6= y ⇐⇒ y @q X − {x}, so (X,@q) is R0. However, @1 is
not R0 since 1 @1 X − {2} but 2 6@1 X − {1}.

Example 6.12. Pairwise R0 does not imply bi-R0. Define @1 by A @1 B if and only if A ⊆
intτ1B where τ1 is the left-ray topology {(−∞, x) : x ∈ R} ∪ {∅,R} on R. It is easy to see that
x @1 R−{y} ⇐⇒ x < y. Thus, x @1 R−{y} does not imply y @1 R−{x}, so @1 is not R0, and
thus (R,@1,@2) is not bi-R0. By Theorem 3.4, we see that cl@1

(x) = [x,∞). Let @2 be the dual
topogenous order arising from the right-ray topology. Now C(x) = cl@1

(x) ∩ c@2
(x) = {x}, so by

Theorem 6.7, (R,@1,@2) is pairwise R0.
For another example, let @1 be Császár’s @ε with ε = 1. That is, A @1 B if and only if

(−∞, supA + 1) ⊆ B. Let @2 be the dual of @1, with A @2 B if and only if (inf A − 1,∞) ⊆ B.
Now x @1 R − {y} ⇐⇒ (−∞, x + 1) ⊆ R − {y} ⇐⇒ x + 1 ≤ y, which does not imply
(y+1 < x ⇐⇒ y @1 R−{x}). Thus, @1 is notR0. Similarly, @2 is notR0. Since y @2 R−{x} ⇐⇒
y − 1 ≥ x ⇐⇒ x @1 R− {y}, we see that (R,@1,@2) is pairwise R0. Furthermore, (R,@1,@2) is
sup-R0. Indeed, we will show that in this case, x @q X −{y} if and only if x @i X −{y} for i = 1
or i = 2. Suppose x @q X − {y}. Then x =

⋃m
i=1(A1

i ∩ A2
i ) and X − {y} =

⋃m
i=1(B1

i ∩B2
i ) where

Aji @j B
j
i (i = 1, . . . ,m, j = 1, 2). Now x @1 A

1
i @1 B

1
i ⇒ x @1 B

1
i ⇒ (−∞, x + 1) ⊆ B1

i . Using
@2, we get (x − 1,∞) ⊆ B2

i . Now y 6∈ B1
i ∩ B2

i implies either y ≥ x + 1 or y ≤ x − 1, and thus
x @1 X − {y} or x @2 X − {y}. Conversely, if x @1 X − {y} or x @2 X − {y} then x @q X − {y}
since @1,@2 ⊆ @q.

The result below suggests that Reilly pairwise T1 is the appropriate choice in bitopogenous
spaces.

Theorem 6.13. A bitopogenous space (X,@1,@2) is Reilly pairwise T1 if and only if it is pairwise
R0 and pairwise T0.

Proof. Suppose (X,@1,@2) is pairwise R0 and pairwise T0 and x 6= y. We wish to show x @1

X−{y} and y @2 X−{x}. Suppose to the contrary x 6@1 X−{y} or y 6@2 X−{x}. The cases are
dual, so suppose x 6@1 X − {y}. By pairwise T0, y @2 X − {x} so Theorem 3.4 gives y 6∈ cl@2

{x}.
Now pairwise R0 gives x 6∈ cl@1

{y}, and Theorem 3.4 gives the contradiction x @1 X − {y}.
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Conversely, suppose (X,@1,@2) is Reilly pairwise T1. Then (X,@1,@2) is pairwise T0. To see
it is pairwise R0, suppose x ∈ cl@1{y}. Then x 6@1 X − {y} and Reilly pairwise T1 implies x = y,
so y ∈ cl@2{x}. �
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