LOWER SEPARATION AXIOMS IN BITOPOGENOUS SPACES

TOM RICHMOND* AND JOSEF ŠLAPAL**

Abstract

Several naturally defined lower separation axioms for bitopological spaces obtained by modifying the axioms T_{0}, T_{1}, and R_{0} appear in the literature. We introduce and study analogous separation axioms for bitopogenous spaces. In particular, we investigate relationships between the axioms and discuss the conditions under which the relationships are similar to those between the corresponding separation axioms for bitopological spaces.

1. Introduction

Topogenous orders were introduced by Császár [2] to give a unified study of topologies, uniformities, and proximities. A topogenous order on a set X is nothing but a binary relation on the power set of X subject to certain axioms. With every topology τ on a set X, we may associate a topogenous order \sqsubset on X by putting $A \sqsubset B$ if and only if $\mu A \subseteq B$, where μ is the Kuratowski closure operator given by τ. In the same way, we may associate binary relations (more general than topogenous orders) with closure operators more general than the Kuratowski ones. This was done, for categorical closure operators, in [6] to study categorical quasi-uniformities. In [13], binary relations (preorders) ρ are studied that are associated with closure operators μ by putting $A \rho B$ if and only if $A \subseteq \mu B$, hence "dually" to associating topogenous orders. An analogous approach is used in [14] to associate preorders with closure operators on posets.

Lower separation axioms play a significant role in applications of topology to computer science. Machine calculations and graphic displays are based on finite sets and thus cannot be adequately modeled by a Hausdorff topology. A bitopogenous space consists of a set and a pair of topogenous orders on this set. The study of bitopogenous spaces includes the study of bitopological spaces. Ordered topological spaces have form (X, τ, \lesssim) where τ is a topology on X and \lesssim is a quasiorder on X. There is a one-to-one correspondence between quasisorders on X and Alexandroff topologies (that is, topologies closed under formation of arbitrary intersections) on X given by $x \lesssim y$ if and only if $x \in \operatorname{cl}\{y\}$ (see [16]). Thus, an ordered topological space (X, τ, \lesssim) may be viewed as a bitopological space $\left(X, \tau, \tau_{\lesssim}\right)$ and thus as a bitopogenous space. A partially ordered topological space (X, τ, \leq) has an associated bitopological space $\left(X, \tau^{\sharp}, \tau^{b}\right)$ where $\tau^{\sharp}=\{V \in \tau: \uparrow V=V\}$ and $\tau^{b}=\{V \in \tau: \downarrow V=V\}$, showing another connection between ordered topological spaces and bitopogenous spaces. (As usual, if P is a poset and $A \subseteq P, \uparrow A=\{y: y \geq a$ for some $a \in A\}$, with $\downarrow A$ defined dually.)

2. Preliminaries

Consider the following conditions which a binary relation \sqsubset on the power set $\mathcal{P}(X)$ of a given set X might satisfy:
(S1) $\emptyset \sqsubset \emptyset, X \sqsubset X$.

[^0](S2) $A \sqsubset B$ implies $A \subseteq B$.
(S3) $A \subseteq A^{\prime} \sqsubset B^{\prime} \subseteq B$ implies $A \sqsubset B$.
(S4) $A \sqsubset B$ and $A^{\prime} \sqsubset B^{\prime}$ imply $A \cap A^{\prime} \sqsubset B \cap B^{\prime}$ and $A \cup A^{\prime} \sqsubset B \cup B^{\prime}$.
(S5) $A \sqsubset B$ implies there exists $C \subseteq X$ with $A \sqsubset C \sqsubset B$.
Following Császár's terminology [2], a relation \sqsubset on $\mathcal{P}(X)$ satisfying (S 1), (S 2), and (S 3) is called a semi-topogenous order on X and, if it also satisfies (S4), then it is called a topogenous order on X. The pair (X, \sqsubset) where X is a set and \sqsubset is a (semi-) topogenous order is called a (semi-)topogenous space. A bitopogenous space is a triple $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ where X is a set and \sqsubset_{1} and \sqsubset_{2} are topogenous orders on X. If a topogenous order \sqsubset on X satisfies the "interpolating property" (S5), then we will call it a syntopogenous order and the pair (X, \sqsubset) will be called a syntopogenous space. (In [2], syntopogenous orders are called simple syntopogenous structures and, instead of syntopogenous spaces, the concept of topogenous spaces is used.) We will often write $x \sqsubset B$ for $\{x\} \sqsubset B$.

Note that a semi-topogenous order is transitive but need not be reflexive or antisymmetric, even if it is a syntopogenous order. Given an element $x \in X$, we put $\uparrow \sqsubset x=\{U \subseteq X: x \sqsubset U\}$. Note that we always have $x \sqsubset X$.

If \sqsubset is a topogenous order on X, its complementary topogenous order \sqsubset^{c} (on X) is defined by

$$
A \sqsubset^{c} B \Longleftrightarrow X-B \sqsubset X-A
$$

A motivating example of a syntopogenous order \sqsubset_{τ} on a set X arises from a topology τ on X in the following way: $A \sqsubset_{\tau} B$ if and only if $A \subseteq i n t_{\tau} B$ (where $i n t_{\tau}$ denotes the interior operator given by τ). The complementary topogenous order to \sqsubset_{τ} is given by $A \sqsubset_{\tau}^{c} B$ if and only if $c l_{\tau} A \subseteq B$ (where $c l_{\tau}$ denotes the closure operator given by τ).

A (semi-)topogenous order \sqsubset is perfect if $A_{i} \sqsubset B_{i}$ for all $i \in I$ implies $\bigcup_{i \in I} A_{i} \sqsubset \bigcup_{i \in I} B_{i}$. If τ is a topology, it is easy to see that \sqsubset_{τ} is a perfect topogenous order. Indeed, the perfect condition is designed to model the idea that arbitrary unions of open sets are open. Note that \sqsubset_{τ}^{c} is perfect if and only if τ is an Alexandroff topology.

Given a set X, we denote by $T O P O G E N(X)$ the set of all topogenous orders on X partially ordered by set inclusion. For topogenous orders \sqsubset and \sqsubset^{\prime}, Császár [2] shows that $\sqsubset \vee \square^{\prime}=\square^{q}$ where $A \sqsubset^{q} B$ if and only if $A=\bigcup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right), B=\bigcup_{i=1}^{m}\left(B_{i} \cap B_{i}^{\prime}\right)$ where $A_{i} \sqsubset B_{i}$ and $A_{i}^{\prime} \sqsubset^{\prime} B_{i}^{\prime}$ for $i=1, \ldots, m$. The meet of any nonempty collection of topogenous orders is their intersection, and inclusion is the largest topogenous order on X. Thus, $T O P O G E N(X)$ forms a complete lattice.

3. SEMI-TOPOGENOUS ORDERS AND CLOSURE OPERATORS

Recall that a Kuratowski closure operator on X is a function $c l: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ which is grounded: cl $\emptyset=\emptyset$,
extensive: $A \subseteq c l A$ for all $A \subseteq X$,
monotonic: $A \subseteq B \subseteq X \Rightarrow c l A \subseteq c l B$,
additive: $\operatorname{cl}(A \cup B)=c l A \cup c l B$ for all $A, B \subseteq X$, and
idempotent: $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl} A$ for all $A \subseteq X$.
It is common to consider closure operators that are more general than the Kuratovski ones, hence not satisfying all of these conditions (which are not independent, since additivity implies monotonicity). In this note, in accordance with [14], closure operators are only required to be extensive, monotonic and idempotent. Given a semi-topogenous order \sqsubset on a set X, we put

$$
c l_{\sqsubset}(A)=\left\{x \in X: \uparrow_{\sqsubset} x \subseteq \bigcup_{a \in A} \uparrow_{\sqsubset} a\right\}
$$

for every $A \subseteq X$.

Theorem 3.1. For every semi-topogenous order \sqsubset on a set X, the function cl $\sqsubset: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ is a grounded closure operator on X.

Proof. We only show that $c l_{\sqsubset}$ is idempotent. The other properties follow easily from the definitions. Suppose $x \in c l_{\sqsubset}\left(c l_{\sqsubset}(A)\right)$. Then $\uparrow_{\sqsubset} x \subseteq \bigcup_{c \in c l_{\sqsubset}(A)} \uparrow_{\sqsubset} c$, so $x \sqsubset U \Rightarrow c \sqsubset U$ for some $c \in c l_{\sqsubset}(A)$. But $c \in \operatorname{cl}_{\sqsubset}(A) \Rightarrow \uparrow_{\sqsubset} c \subseteq \bigcup_{a \in A} \uparrow \sqsubset a$, so $c \sqsubset U \Rightarrow a \sqsubset U$ for some $a \in A$. Thus, $x \sqsubset U \Rightarrow a \sqsubset U$ for some $a \in A$, so $\uparrow_{\sqsubset} x \subseteq \bigcup_{a \in A} \uparrow_{\sqsubset} a$ and hence $x \in c l_{\sqsubset}(A)$. The converse, $c l_{\sqsubset}(A) \subseteq c l_{\sqsubset}\left(c l_{\sqsubset}(A)\right)$, follows since $c l_{\sqsubset}$ is extensive.

Császár ([2], pp. 212-219) defined Kuratowski closure operators associated with syntopogenous orders. Extending his definition to semi-topogenous orders, we get a grounded closure operator $c l_{C s}$ on X associated with a semi-topogenous order \sqsubset on a set X in the following way: for $A \subseteq X$,

$$
\operatorname{cl}_{C s}(A)=\{x: x \sqsubset U \Rightarrow U \cap A \neq \emptyset\} .
$$

It is easy to see that $c l_{\sqsubset}(A) \subseteq c l_{C s}(A)$ for any $A \subseteq X$. The following example shows that the two closure operators are not equal in general.

Example 3.2. Given a fixed $\varepsilon>0$, on \mathbb{R}, define $A \sqsubset_{\varepsilon} B$ if and only if the ε-fattening of A is contained in B, that is, if and only if $a \in A \Rightarrow(a-\varepsilon, a+\varepsilon) \subseteq B$. It is easy to check that \sqsubset_{ε} is a topogenous order satisfying (S1)-(S4). Taking $A=\{0\} \sqsubset_{\varepsilon}(-\varepsilon, \varepsilon)=B$, we see that (S5) fails, so \sqsubset_{ε} is not a syntopogenous order.

Let $\varepsilon=1 / 2$. Then $\operatorname{cl}_{\sqsubset}\{1\}=\left\{x: x \sqsubset_{1 / 2} U \Rightarrow 1 \sqsubset_{1 / 2} U\right\}=\{1\}$. Using Császár's closure, $c l_{C s}\{1\}=\left\{x: x \sqsubset_{1 / 2} U \Rightarrow 1 \in U\right\}=(1 / 2,3 / 2)$.

Remark 3.3. It is easy to see that, for every topology $\tau, c l_{\sqsubset_{\tau}}$ agrees with $c l_{\tau}$.
The lemma below gives a characterization of point closures which will be useful in working with lower separation axioms.

Theorem 3.4. If \sqsubset is a semi-topogenous order on X and $x, y \in X$, then

$$
y \in c l_{\sqsubset}\{x\} \Longleftrightarrow y \not \subset X-\{x\} .
$$

Proof. (\Rightarrow) : Suppose $y \in c l_{\sqsubset}\{x\}$, so $\uparrow_{\sqsubset} y \subseteq \uparrow_{\sqsubset} x$. If $y \sqsubset X-\{x\}$, then $X-\{x\} \in \uparrow_{\sqsubset} y \subseteq \uparrow_{\sqsubset} x$, which gives $x \sqsubset X-\{x\}$, contradicting (S2).

$$
\begin{aligned}
(\Leftarrow): \quad y \not \subset X-\{x\} & \Rightarrow y \not \subset V \text { for each } V \subseteq X-\{x\} \text { by }(\mathrm{S} 3) \\
& \Rightarrow(y \sqsubset V \Longleftrightarrow V=X) \\
& \Rightarrow \uparrow \sqsubset y=\{X\} \subseteq \uparrow \sqsubset x \\
& \Rightarrow y \in c l_{\sqsubset}\{x\} .
\end{aligned}
$$

Any topogenous order \sqsubset on X gives a topology on X (see [3]) defined by

$$
\mathcal{T}_{\sqsubset}=\{U \subseteq X: x \in U \Rightarrow x \sqsubset U\}
$$

Thinking of $\uparrow_{\sqsubset} x$ as the neighborhood filter of x, this corresponds to the statement that U is open if and only if it is a neighborhood of each of its points. It is easy to see that if \sqsubset is perfect, then $\mathcal{T}_{\sqsubset}=\{U \subseteq X: U \sqsubset U\}$. The example below shows that when \sqsubset is not perfect, U may be open in \mathcal{T}_{\sqsubset} even if $U \not \subset U$.

Example 3.5. On \mathbb{R}, define $A \sqsubset B$ if and only if $A \subseteq B$ and A is finite or $B=\mathbb{R}$. It is easy to see that \sqsubset is a syntopogenous order on \mathbb{R}. However, \sqsubset is not perfect: $\{x\} \sqsubset[0,2]$ for all $x \in[0,1]$, but $[0,1]=\bigcup_{x \in[0,1]}\{x\} \not \subset[0,2]$. It is easy to see that $\mathcal{T}_{\sqsubset}=\mathcal{P}(\mathbb{R})$. The set $U=(0,1)$ is \mathcal{T}_{\sqsubset}-open but $U \not \subset U$.

We further note that $A=c l_{\sqsubset}(A)$ for all $A \subseteq \mathbb{R}$. Indeed, if $x \in c l_{\sqsubset}(A)$, then $U=\{x\} \in \uparrow_{\sqsubset} x$ so there exists $a \in A$ with $U=\{x\} \in \uparrow_{\sqsubset} a$. Thus, $a \sqsubset\{x\}$, so $\{a\} \subseteq\{x\}$ and $x=a \in A$.

It follows that, in this example, $U \in \mathcal{T}_{\sqsubset} \Longleftrightarrow c l_{\sqsubset}(\mathbb{R}-U)=\mathbb{R}-U$.
Burgess and Fitzpatrick [1] define, in a more general setting, a preorder \lesssim on X by $x \lesssim y \Longleftrightarrow$ $x \not \subset X-\{y\}$, or by Theorem 3.4, $x \lesssim y \Longleftrightarrow x \in c l_{\sqsubset}\{y\}$. They require (an analog) of the interpolative property (S 5) and do not seem to address any of the questions we consider.

4. The T_{0} SEParation AXIOM

The following definition may be found in [2].
Definition 4.1. A semi-topogenous space (X, \sqsubset) is T_{0} if for distinct points x, y, we have $x \sqsubset$ $X-\{y\}$ or $y \sqsubset X-\{x\}$.

The bitopogenous definitions below generalize the corresponding bitopological definitions, which are discussed in [8].
Definition 4.2. A bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is called
(a) weak pairwise T_{0} if for distinct points x and y,

$$
\left[x \sqsubset_{1} X-\{y\} \vee y \sqsubset_{2} X-\{x\}\right] \vee\left[y \sqsubset_{1} X-\{x\} \vee x \sqsubset_{2} X-\{y\}\right],
$$

(b) pairwise T_{0} if for distinct points x and y,

$$
\left[x \sqsubset_{1} X-\{y\} \vee y \sqsubset_{2} X-\{x\}\right] \wedge\left[y \sqsubset_{1} X-\{x\} \vee x \sqsubset_{2} X-\{y\}\right] .
$$

The condition on distinct points $x \neq y$ used in the definition of pairwise T_{0} could be simplified to $\left[x \sqsubset_{1} X-\{y\} \vee y \sqsubset_{2} X-\{x\}\right]$ since $x \neq y$ implies $y \neq x$. We used the long form to contrast it with weak pairwise T_{0} space.

If $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is a bitopogenous space and P is some separation axiom, the property of $\left(X, \sqsubset_{1}\right.$, \sqsubset_{2}) being pairwise- P is defined case-by-case, typically involving some interaction between \sqsubset_{1} and \sqsubset_{2}. Following the terminology for bitopological spaces in Lal [7], we say a bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is
$b i-P$ if each of the spaces $\left(X, \sqsubset_{1}\right)$ and $\left(X, \sqsubset_{2}\right)$ is P, and sup- P if the space $\left(X, \sqsubset_{1} \vee \sqsubset_{2}\right)$ is P.
Below we will consider possible implications between sup- P, pairwise- P, and bi- P for various separation axioms P applied to a bitopogenous space.
Theorem 4.3. If $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is a bitopogenous space, the following implications hold.

Proof. The only implication which does not follow immediately from the definitions is sup $T_{0} \Rightarrow$ weakly pairwise T_{0}. Suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is sup T_{0} and $\sqsubset_{1} \vee \sqsubset_{2}=\sqsubset^{q}$. Then for $x \neq y, x \sqsubset^{q}$ $X-\{y\}$ or $y \sqsubset^{q} X-\{x\}$. Suppose $x \sqsubset^{q} X-\{y\}$. Then from the characterization of \sqsubset^{q}, we have $\{x\}=\bigcup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right)$ and $X-\{y\}=\bigcup_{i=1}^{m}\left(B_{i} \cap B_{i}^{\prime}\right)$ where $A_{i} \sqsubset_{1} B_{i}$ and $A_{i}^{\prime} \sqsubset_{2} B_{i}^{\prime}$ for all $i \in\{1, \ldots, m\}$. It follows that $A_{i} \cap A_{i}^{\prime} \subseteq\{x\}$ for all i and $A_{j} \cap A_{j}^{\prime}=\{x\}$ for some $j \in\{1, \ldots, m\}$.

Furthermore, $y \notin B_{j} \cap B_{j}^{\prime}$. Suppose $y \notin B_{j}^{\prime}$. Then $\{x\} \subseteq A_{j}^{\prime} \sqsubset_{2} B_{j}^{\prime} \subseteq X-\{y\}$, so $x \sqsubset_{2} X-\{y\}$, which shows $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is weakly pairwise T_{0}. The other three cases are similar.

5. The T_{1} SEPARATION AXIOM

Definition 5.1. A semi-topogenous space (X, \sqsubset) is T_{1} if for distinct points x, y, we have $x \sqsubset$ $X-\{y\}$ (and $y \sqsubset X-\{x\}$).

A semi-topogenous space (X, \sqsubset) is T_{1} if $y \sqsubset^{c} y$ for all y : For $x \neq y,\{x\} \subseteq X-\{y\} \sqsubset X-\{y\}$, so $x \sqsubset X-\{y\}$. The converse holds if \sqsubset is perfect: If \sqsubset is T_{1} and perfect, $y \sqsubset^{c} X-\{x\}$ for all $x \neq y$ gives $y \sqsubset^{c} \bigcap_{x \neq y} X-\{x\}=\{y\}$, so $y \sqsubset^{c} y$.

The various bitopogenous definitions below generalize the corresponding bitopological definitions from $[12,15,11]$, as discussed in [8].

Definition 5.2. A bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is called
(a) Reilly pairwise T_{1} if for distinct points x and y,

$$
x \sqsubset_{1} X-\{y\} \wedge y \sqsubset_{2} X-\{x\} .
$$

(b) weak pairwise T_{1} if for distinct points x and y,

$$
\left(x \sqsubset_{1} X-\{y\} \wedge y \sqsubset_{2} X-\{x\}\right) \bigvee\left(x \sqsubset_{2} X-\{y\} \wedge y \sqsubset_{1} X-\{x\}\right)
$$

(c) $M N$ pairwise T_{1} if for distinct points x and y,

$$
x \sqsubset_{1} X-\{y\} \vee x \sqsubset_{2} X-\{y\}
$$

Lemma 5.3. A semi-topogenous space (X, \sqsubset) is T_{1} if and only if cl $l_{\sqsubset}\{x\}=\{x\}$ for each $x \in X$.
Proof. If \sqsubset is T_{1} and $x \neq y$, then $y \sqsubset X-\{x\}$ and Theorem 3.4 implies $y \notin c l_{\sqsubset}\{x\}$, so $c l_{\sqsubset}\{x\}=$ $\{x\}$. If $c l_{\sqsubset}^{\sqsubset}\{x\}=\{x\}$ for every x, then for $x \neq y$, we have $y \notin c l_{\sqsubset}\{x\}$ and $x \notin c l_{\sqsubset}\{y\}$, and applying Theorem 3.4 shows \sqsubset is T_{1}.

It is easy to see that the following implications are the only implications which hold between the various forms of pairwise T_{0} and T_{1}.

We will employ the following basic result:
Theorem 5.4. If τ_{1} and τ_{2} are topologies on X, then the topogenous orders $\sqsubset_{\tau_{1}}, \sqsubset_{\tau_{2}} \in \operatorname{TOPOGEN}(X)$ satisfy $\sqsubset_{\tau_{1}} \vee \sqsubset_{\tau_{2}}=\sqsubset_{\tau_{1} \vee \tau_{2}}$.
Proof. Let $\sqsubset^{q}=\sqsubset_{\tau_{1}} \vee \sqsubset_{\tau_{2}}$ and $\tau_{3}=\tau_{1} \vee \tau_{2}$.
If $A \sqsubset^{q} B$, then $A=\bigcup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right), B=\bigcup_{i=1}^{m}\left(B_{i} \cap B_{i}^{\prime}\right)$ where $A_{i} \subseteq i n t_{1} B_{i}$ and $A_{i}^{\prime} \subseteq i n t_{2} B_{i}^{\prime}$ for $i=1, \ldots, m$. For $j=1,2, i n t_{j} B \subseteq i n t_{3} B$, so we have $A_{i} \cap A_{i}^{\prime} \subseteq i n t_{3} B_{i} \cap i n t_{3} B_{i}^{\prime} \subseteq i n t_{3}\left(B_{i} \cap B_{i}^{\prime}\right)$. Thus, $A=\bigcup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right) \subseteq \bigcup_{i=1}^{m} i n t_{3}\left(B_{i} \cap B_{i}^{\prime}\right) \subseteq i n t_{3} \bigcup_{i=1}^{m}\left(B_{i} \cap B_{i}^{\prime}\right)=i n t_{3} B$, so $A \sqsubset_{3} B$.

Conversely, if $A \sqsubset_{3} B$, then there exists an τ_{3}-open set C with $A \subseteq C \subseteq B$. Since $\tau_{3}=\tau_{1} \vee \tau_{2}$, $C=\bigcup_{i=1}^{m}\left(U_{i} \cap V_{i}\right)$ where $U_{i} \in \tau_{1}, V_{i} \in \tau_{2}$ for all i. Let $A_{i}=A \cap U_{i}, A_{i}^{\prime}=A \cap V_{i}, B_{i}=B \cup U_{i}$, $B_{i}^{\prime}=B \cup V_{i}$. Now $A_{i} \subseteq U_{i} \subseteq B_{i}$ shows $A_{i} \sqsubset_{1} B_{i}$ and similarly $A_{i}^{\prime} \sqsubset_{2} B_{i}^{\prime}$. Since $A=\bigcup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right)$ and $B=\bigcup_{i=1}^{m}\left(B_{i} \cap B_{i}^{\prime}\right)$, we have $A \sqsubset^{q} B$.

Example 5.5. Let X be a set and $T O P(X)$ be the lattice of topologies on X. The subposet $\mathcal{S}=\left\{\sqsubset_{\tau}: \tau \in \operatorname{TOP}(X)\right\}$ of $\operatorname{TOPOGEN}(X)$ is not lattice isomorphic to $T O P(X)$, even though $\wedge=\cap$ in both $\operatorname{TOP}(X)$ and $\mathcal{S} \subseteq T O P O G E N(X)$. Specifically,

$$
\sqsubset_{\tau_{1} \wedge \tau_{2}} \neq \sqsubset_{\tau_{1}} \wedge \sqsubset_{\tau_{2}} .
$$

On $X=\{1,2,3,4\}$, let τ_{1} and τ_{2} be the topologies generated by the bases $\mathcal{B}_{1}=\{\{1,2\},\{3,4\}\}$ and $\mathcal{B}_{2}=\{\{1\}\{2,3\},\{4\}\}$, respectively. Now $\{3\} \subseteq \operatorname{int}_{i}\{2,3,4\}$ for $i=1,2$, so $3 \sqsubset_{\tau_{i}}\{2,3,4\}$ for $i=1$, 2. Thus, with $\sqsubset=\sqsubset_{\tau_{1}} \cap \sqsubset_{\tau_{2}}$, we have $3 \sqsubset\{2,3,4\}$. However, $\tau_{1} \wedge \tau_{2}=\{\emptyset, X\}$, so $3 \not \subset_{\tau_{1} \wedge \tau_{2}}\{2,3,4\}$ since $\{3\} \nsubseteq \emptyset=i n t_{\tau_{1} \wedge \tau_{2}}\{2,3,4\}$.

If X has at least three points and $p \in X$, the particular point topology $\{U \in X: p \in U\} \cup\{\emptyset\}$ and the excluded point topology $\{U \in X: p \notin U\} \cup\{X\}$ give topogenous orders with $x \sqsubset_{p} X-\{y\}$ if and only if $y \neq p$ and $x \sqsubset_{e} X-\{y\}$ if and only if $y=p$ when x and y are distinct. By Theorem 5.4, $\sqsubset_{p} \vee \sqsubset_{e}$ corresponds to the discrete topology, which is T_{1}. Now with $x \neq y$ in $X-\{p\}$, we see $\left(X, \sqsubset_{p}, \sqsubset_{e}\right)$ is MN T_{1} but not weak pairwise T_{1}. In particular, sup- $T_{1} \nRightarrow$ weak pairwise T_{1}.
Theorem 5.6. For a bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$, bi- $T_{1} \Longleftrightarrow$ Reilly pairwise T_{1} and $\quad M N$ pairwise $T_{1} \Longleftrightarrow$ sup $-T_{1}$.
Proof. The first equivalence follows from the definitions. Since $\sqsubset_{1} \cup \sqsubset_{2} \subseteq \sqsubset_{1} \vee \sqsubset_{2}$, it follows that MN pairwise T_{1} implies sup- T_{1}. The converse follows by repeating the proof of Theorem 4.3.

6. The R_{0} Separation axiom

The R_{0} topological condition, introduced by Davis [4], is useful because a topological space (X, τ) is T_{1} if and only if it is T_{0} and R_{0}.

Recall that a topological space (X, τ) is R_{0} if it satisfies any one of the following equivalent conditions.
(a) If F is a closed set and $x \notin F$, then there exists an open set U with $F \subseteq U$ and $x \notin U$.
(b) If U is an open set and $x \in U$, then $\operatorname{cl}\{x\} \subseteq U$.
(c) $\{\operatorname{cl}\{x\}: x \in X\}$ is a partition of X.

The equivalence of these statements (and six others) may be found in [4] and [5] (see [8]).
Example 6.1. If (X, τ) is R_{0} and τ^{\prime} is coarser or finer than τ, then τ^{\prime} need not be R_{0}. Let $X=\{1,2\}$ and $\tau=\{\emptyset,\{2\},\{1,2\}\}$. Now $\{\operatorname{cl}\{x\}: x \in X\}=\{\{1\},\{1,2\}\}$ is not a partition of X so by $(c), \tau$ is not R_{0}. Again using (c), it is easy to see that the discrete topology τ_{d} and the indiscrete topology τ_{i} on X are R_{0}. Since $\tau_{i} \subseteq \tau \subseteq \tau_{d}$, this shows the result.

The defining conditions $(a)-(c)$ above may be interpreted in the (semi)-topogenous setting as follows:
(a^{\prime}) For every $x \in X$ and every $U \subseteq X$, if $x \sqsubset U$ then there exists $V \subseteq X-\{x\}$ such that $X-U \sqsubset V$.
(b^{\prime}) For every $x \in X$ and every $U \subseteq X$, if $x \sqsubset U$ then $x \sqsubset^{c} U$, that is, for all $x \in X, \uparrow_{\sqsubset} x \subseteq \uparrow_{\complement^{c}} x$. $\left(c^{\prime}\right)\left\{c l_{\sqsubset}\{x\}: x \in X\right\}$ is a partition of X.

Since we hope T_{0} and R_{0} together will imply T_{1} in the topogenous setting, the example below shows that $\left(a^{\prime}\right)$ and $\left(b^{\prime}\right)$ are generally not a suitable way to define R_{0} in a topogenous space.
Example 6.2. On \mathbb{R}, define a syntopogenous order by $A \sqsubset B$ if and only if $A \subseteq B$ and A is finite or $A=\mathbb{R}$, as in Example 3.5. Then the syntopogenous space (\mathbb{R}, \sqsubset) is T_{1}. Furthermore, $1 \sqsubset U=[0,2]$ but $\mathbb{R}-U \sqsubset V$ if and only if $V=\mathbb{R} \nsubseteq \mathbb{R}-\{x\}$, so \sqsubset does not satisfy condition $\left(a^{\prime}\right)$. Also, $1 \not \subset^{c}[0,2]$ since $\mathbb{R}-[0,2] \not \subset \mathbb{R}-\{1\}$, so \sqsubset does not satisfy condition (b^{\prime}). Significantly, note that \sqsubset is not perfect.

Theorem 6.3. Suppose (X, \sqsubset) is a semi-topogenous space, conditions $\left(a^{\prime}\right),\left(b^{\prime}\right),\left(c^{\prime}\right)$ are as given above, and $\left(c^{\prime \prime}\right)$ is the condition that, for all $x, y \in X$, we have $x \in c l_{\sqsubset}\{y\} \Rightarrow y \in c l_{\sqsubset}\{x\}$. Then

$$
\left(a^{\prime}\right) \Longleftrightarrow\left(b^{\prime}\right) \Longrightarrow\left(c^{\prime}\right) \Longleftrightarrow\left(c^{\prime \prime}\right)
$$

Furthermore, all these conditions are equivalent if (X, \sqsubset) is perfect.
Proof. Suppose \sqsubset satisfies $\left(a^{\prime}\right)$. Now $x \sqsubset U$ implies that there exists $V \subseteq X$ such that $X-U \sqsubset$ $V \subseteq X-\{x\}$, so by (S3), $X-U \sqsubset X-\{x\}$, or $x \sqsubset^{c} U$. Thus $\left(a^{\prime}\right) \Rightarrow\left(b^{\prime}\right)$. Conversely, suppose \sqsubset fails condition $\left(b^{\prime}\right)$. Then there exist $x \in X$ and $U \subseteq X$ such that $x \sqsubset U$, yet $X-U \not \subset X-\{x\}$. Then $X-U \not \subset V$ for any $V \subseteq X-\{x\}$, so \sqsubset fails condition $\left(a^{\prime}\right)$. Thus, $\left(a^{\prime}\right) \Longleftrightarrow\left(b^{\prime}\right)$.

Suppose \sqsubset satisfies $\left(b^{\prime}\right)$ and $y \notin c l_{\sqsubset}\{x\}$. By Theorem 3.4, $y \sqsubset X-\{x\}$, and by $\left(b^{\prime}\right), x \sqsubset X-\{y\}$. Now Theorem 3.4 gives $x \notin c l_{\sqsubset}\{y\}$. Thus, \sqsubset satisfies $\left(c^{\prime}\right)$.

Suppose (X, \sqsubset) satisfies condition $\left(c^{\prime}\right)$ and $x \in c l_{\sqsubset}\{y\}$. Now $\{x\} \in c l_{\sqsubset}\{x\} \cap c l_{\sqsubset}\{y\}$ implies $c l_{\sqsubset}\{x\}=c l_{\sqsubset}\{y\}$, so $y \in c l_{\sqsubset}\{x\}$ and (X, \sqsubset) satisfies $\left(c^{\prime \prime}\right)$. Conversely, suppose \sqsubset satisfies $\left(c^{\prime \prime}\right)$ and $z \in c l_{\sqsubset}\{x\} \cap c l_{\sqsubset}\{y\}$. Then $z \in c l_{\sqsubset}\{x\} \Rightarrow x \in c l_{\sqsubset}\{z\}$, so we have $\uparrow_{\sqsubset} z \subseteq \uparrow_{\sqsubset} x \subseteq \uparrow_{\sqsubset} z$, and thus $c l_{\sqsubset}\{x\}=\left\{w: \uparrow_{\sqsubset} w \subseteq \uparrow_{\sqsubset} x\right\}=\left\{w: \uparrow_{\sqsubset} w \subseteq \uparrow_{\sqsubset} z\right\}=c l_{\sqsubset}\{z\}$. Similarly, $c l_{\sqsubset}\{y\}=c l_{\sqsubset}\{z\}$, so $c l_{\sqsubset}\{x\} \cap c l_{\sqsubset}\{y\} \neq \emptyset \Rightarrow c l_{\sqsubset}\{x\}=c l_{\sqsubset}\{y\}$. Clearly each $c l_{\sqsubset}\{x\}$ is nonempty and the union of such point-closures is X. Thus, $\left(c^{\prime}\right) \Longleftrightarrow\left(c^{\prime \prime}\right)$.

Finally, suppose \sqsubset is perfect and satisfies $\left(c^{\prime \prime}\right)$ and $x \sqsubset U$. For any $y \notin U$, we have $U \subseteq X-\{y\}$ so $x \sqsubset X-\{y\}$. Applying $\left(c^{\prime \prime}\right)$ and Theorem 3.4, we have $y \sqsubset X-\{x\}$. Since \sqsubset is perfect, it follows that $X-U=\bigcup_{y \in X-U}\{y\} \sqsubset X-\{x\}$, so $\sqsubset \operatorname{satisfies~}\left(b^{\prime}\right)$.

We take conditions ($c^{\prime \prime}$) as our definition of R_{0}.
Definition 6.4. A semi-topogenous space (X, \sqsubset) is R_{0} if and only if $x \in c l_{\sqsubset}\{y\} \Rightarrow y \in c l_{\sqsubset}\{x\}$ whenever $x, y \in X$.

The next theorem shows that our definition does what it should.
Theorem 6.5. A semi-topogenous space (X, \sqsubset) is T_{1} if and only if it is R_{0} and T_{0}.
Proof. Suppose (X, \sqsubset) is R_{0} and T_{0} and $x \neq y$. Say $x \sqsubset X-\{y\}=U$. Then $X-\{y\} \in \uparrow_{\sqsubset} x$ but by (S2), $X-\{y\} \notin \uparrow_{\sqsubset} y$. Thus $\uparrow_{\sqsubset} x \nsubseteq \uparrow_{\sqsubset} y$, so $x \notin c l_{\sqsubset}\{y\}$. By $R_{0}, y \notin c l_{\sqsubset}\{x\}$. By Theorem 3.4, $y \notin \operatorname{cl}_{\sqsubset}\{x\} \Rightarrow y \sqsubset X-\{x\}$ which completes the proof that \sqsubset is T_{1}.

Now suppose (X, \sqsubset) is T_{1}. Clearly it is T_{0}, and Lemma 5.3 shows it is R_{0}.
In [8], nine conditions equivalent to the topological R_{0} condition were given, and it was noted that none had direct analogs to both the ordered topological setting and the bitopological setting. That fact prompted the reconsideration of the standard definition of T_{1}-ordered, and subsequently, of R_{0}-ordered in [8]. Among the seven equivalent conditions Misra and Dube [9] give to define pairwise R_{0} in the bitopological setting, we have selected the following convenient condition, which extends properly to the topogenous setting: A bitopological space (X, τ_{1}, τ_{2}) is pairwise R_{0} if and only if $y \in \operatorname{cl}_{\tau_{1}}(x) \Longleftrightarrow x \in \operatorname{cl}_{\tau_{2}}(y)$ for all $x, y \in X$.
Definition 6.6. A bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0} if, for all $x, y \in X$,

$$
x \in c l_{\sqsubseteq_{1}}\{y\} \Longleftrightarrow y \in c l_{\sqsubset_{2}}\{x\} .
$$

Definition 6.6 and all the remaining results of this section hold for "bi-topogenous" spaces ($X, \sqsubset_{1}, \sqsubset_{2}$) where \sqsubset_{1} and \sqsubset_{2} are only semi-topogenous orders, with the exception of the results below concerning $\sqsubset_{1} \vee \sqsubset_{2}=\sqsubset^{q}$, where this supremum is taken among topogenous orders instead of semi-topogenous orders.

Suppose (X, τ, \leq) is a partially ordered topological space and τ^{b}, τ^{\sharp} are as defined in Section 1. Following the notation of [8], $I(A)=c l_{\tau^{b}}(A), D(A)=c l_{\tau^{\sharp}}(A)$, and $C(A)=I(A) \cap D(A)$. Now
$\left(X, \tau^{b}, \tau^{\sharp}\right)$ is pairwise R_{0} if $x \in I(y)=c l_{\tau^{\natural}}\{y\} \Longleftrightarrow y \in D(x)=c l_{\tau^{\sharp}}\{x\}$, and it is easy to see that $x \in C(y)$ if and only if $y \in C(x)$, so by Definition 12 of [8], this is equivalent to ($X, \tau, \leq)$ being R_{0}^{K}-ordered, which is Künzi's version of ordered R_{0} and plays a role in characterizing those ordered topological spaces whose Wallman ordered compactifications are not only T_{1}, but also satisfy an ordered version of the T_{1} property (namely, Künzi's T_{1}^{K}-ordered property). This discussion suggests the following result, which is easy to prove. (Compare Theorem 13 of [8].)
Theorem 6.7. Suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is a bitopogenous space and $C(x)=c l_{\sqsubset_{1}}(x) \cap c l_{\sqsubset_{2}}(x)$. Then the following are equivalent.
(a) $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0}.
(b) $y \in C(x) \Longleftrightarrow x \in C(y)$.
(c) $\{C(x): x \in X\}$ is a partition of X.
($X, \sqsubset_{1}, \sqsubset_{2}$) being pairwise R_{0} is independent of $\left(X, \sqsubset_{1}\right)$ and $\left(X, \sqsubset_{2}\right)$ being R_{0}. That is, pairwise R_{0} neither implies nor is implied by bi- R_{0}. For example, let \sqsubset_{i} and \sqsubset_{d} be, respectively, the topogenous orders from the indiscrete and discrete topologies on \mathbb{R}. Now $\left(\mathbb{R}, \sqsubset_{i}\right)$ and $\left(\mathbb{R}, \sqsubset_{d}\right)$ are both R_{0}, but $x \in c l_{\complement_{2}}\{y\}=\mathbb{R} \nRightarrow y \in c l_{\sqsubset_{1}}\{x\}=\{x\}$.

Theorem 5.8 in [9] shows that if a bitopololgical space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise- R_{0} and $\tau_{1} \subseteq \tau_{2}$, then τ_{2} is R_{0}. The proof given there does not carry over directly, but the corresponding result still holds:

Theorem 6.8. If a bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise- R_{0} and $\sqsubset_{1} \subseteq \sqsubset_{2}$, then \sqsubset_{2} is R_{0}.
Proof. A direct application of the definitions shows that if $\sqsubset_{1} \subseteq \sqsubset_{2}$, then $c l_{\sqsubset_{2}}\{x\} \subseteq c l_{\sqsubset_{1}}\{x\}$ for all $x \in X$. Thus, under the hypothesis, $C(x)=c l_{\sqsubset_{2}}(x)$ for all $x \in X$. By Theorem 6.7, $\left\{c l_{\sqsubset_{2}}\{x\}: x \in X\right\}$ is a partition of X, so \sqsubset_{2} is R_{0}.

We note that if a bitopolgoical space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise R_{0} then it is sup- R_{0}, that is, $(X$, $\tau_{1} \vee \tau_{2}$) is R_{0} (Proposition 9 of [10]).

Theorem 6.9. For a bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$,

$$
\text { bi- } R_{0} \Rightarrow \text { pairwise } R_{0} \Rightarrow \text { sup- } R_{0}
$$

and no other implications hold between these three properties.
Proof. Suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is bi- R_{0}. Applying Theorem 6.7, we have $y \in C(x) \Longleftrightarrow(y \in$ $\left.c l_{\sqsubset_{1}}(x) \wedge y \in c l_{\sqsubset_{2}}(x)\right) \Longleftrightarrow\left(x \in c l_{\sqsubset_{1}}(y) \wedge x \in c l_{\sqsubset_{2}}(y)\right) \Longleftrightarrow x \in C(y)$, so $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0}.

Suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise $R_{0}, \sqsubset^{q}=\sqsubset_{1} \vee \sqsubset_{2}$, and $x \sqsubset^{q} X-\{y\}$. We wish to show $y \sqsubset_{q} X-\{x\}$. From the characterization of \sqsubset^{q} given in [2], we have that $\{x\}=\bigcup_{i=1}^{m}\left(A_{i}^{1} \cap A_{i}^{2}\right)$ and $X-\{y\}=\bigcup_{i=1}^{m}\left(B_{i}^{1} \cap B_{i}^{2}\right)$ where $A_{i}^{1} \sqsubset_{1} B_{i}^{1}$ and $A_{i}^{2} \sqsubset_{2} B_{i}^{2}$ for all $i=1, \ldots, m$. Now $\{x\} \in A_{i}^{1} \cap A_{i}^{2}$ and $y \notin B_{i}^{1} \cap B_{i}^{2}$ for all $i=1, \ldots, m$. Thus, for any i, we have

$$
\begin{aligned}
& y \notin B_{i}^{1} \quad \text { or } \quad y \notin B_{i}^{2} \\
& \{x\} \subseteq A_{i}^{1} \sqsubset_{1} B_{i}^{1} \subseteq X-\{y\} \quad \text { or } \quad\{x\} \subseteq A_{i}^{2} \sqsubset_{2} B_{i}^{2} \subseteq X-\{y\} \\
& x \sqsubset_{1} X-\{y\} \quad \text { or } \\
& x \sqsubset_{2} X-\{y\}
\end{aligned}
$$

and applying the pairwise R_{0} condition,

$$
\begin{array}{rlrl}
C_{i}^{2} \equiv\{y\} \sqsubset_{2} X-\{x\} \equiv D_{i}^{2} & \text { or } \quad C_{i}^{1} \equiv\{y\} \sqsubset_{1} X-\{x\} \equiv D_{i}^{1} \\
C_{i}^{1} \equiv\{y\} \sqsubset_{1} X \equiv D_{i}^{1} & & C_{i}^{2} \equiv\{y\} \sqsubset_{2} X \equiv D_{i}^{2}
\end{array}
$$

This gives, for any $i=1, \ldots, m$, sets $C_{i}^{1} \sqsubset_{1} D_{i}^{1}$ and sets $C_{i}^{2} \sqsubset_{2} D_{i}^{2}$ with $C_{i}^{1} \cap C_{i}^{2}=\{y\}$ and $D_{i}^{1} \cap D_{i}^{2}=X-\{x\}$. Now $\{y\}=\bigcup_{i=1}^{m}\left(C_{i}^{1} \cap C_{i}^{2}\right) \sqsubset^{q} \bigcup_{i=1}^{m}\left(D_{i}^{1} \cap D_{i}^{2}\right)=X-\{x\}$, so \sqsubset^{q} is R_{0}.

The counterexamples that follow complete the proof.

Example 6.10. sup- R_{0} does not imply pairwise R_{0}. Let $I_{1}=(0,1), I_{2}=(2,3), X=I_{1} \cup I_{2}$, and let τ_{1} be the right ray topology restricted to $(X, \leq) \subseteq(\mathbb{R}, \leq)$. Let τ_{2} be the left ray topology on $\left(X, \leq^{\prime}\right)$ where \leq^{\prime} restricted to I_{j} is the usual order from the real line, but with $I_{2}<I_{1}$. Open and closed sets in τ_{1} and τ_{2} are shown in bold in the following figure.

Define $A \sqsubset_{i} B$ if and only if $A \subseteq i n t_{\tau_{i}} B$ for $i=1,2$. By Remark $3.3, c l_{\sqsubset_{i}}=c l_{\tau_{i}}$. For $y=.5$ and $x=1.5$, we have $y \in c l_{\sqsubset_{2}}(x)$ but $x \notin c l_{\sqsubset_{1}}(y)$, so $\left(X, \tau_{1}, \tau_{2}\right)$ is not pairwise R_{0}.

Now $\tau_{1} \vee \tau_{2}$ is the Euclidean topology \mathcal{E}, so $c l_{\square_{1} \vee \sqsubset_{2}}=c l_{\mathcal{E}}$ by Theorem 5.4 and Remark 3.3. Thus, $x \in c l_{\mathcal{E}}\{y\} \Longleftrightarrow y \in c l_{\mathcal{E}}\{x\}$, so $\left(X, \tau_{1}, \tau_{2}\right)$ is sup- R_{0}.

Example 6.11. sup- R_{0} does not imply bi- R_{0}. Let \sqsubset_{i} be defined by $A \sqsubset_{i} B$ if and only if $A \subseteq$ $\operatorname{int}_{\tau_{i}} B$ where $\tau_{1}=\{\emptyset,\{1\},\{1,2\}\}$ and $\tau_{2}=\{\emptyset,\{2\},\{1,2\}\}$. Now $A \sqsubset_{1} B$ for every $A \subseteq B \subseteq\{1,2\}$ except $A=B=\{2\}$, and since $\{2\} \sqsubset_{2}\{2\}$, with $\sqsubset^{q}=\sqsubset_{1} \vee \sqsubset_{2}$, we have $A \sqsubset^{q} B$ if and only if $A \subseteq B$. Thus, $x \sqsubset^{q} X-\{y\} \Longleftrightarrow x \neq y \Longleftrightarrow y \sqsubset^{q} X-\{x\}$, so $\left(X, \sqsubset^{q}\right)$ is R_{0}. However, \sqsubset_{1} is not R_{0} since $1 \sqsubset_{1} X-\{2\}$ but $2 \not \subset \subset_{1} X-\{1\}$.

Example 6.12. Pairwise R_{0} does not imply bi- R_{0}. Define \sqsubset_{1} by $A \sqsubset_{1} B$ if and only if $A \subseteq$ $\operatorname{int}_{\tau_{1}} B$ where τ_{1} is the left-ray topology $\{(-\infty, x): x \in \mathbb{R}\} \cup\{\emptyset, \mathbb{R}\}$ on \mathbb{R}. It is easy to see that $x \sqsubset_{1} \mathbb{R}-\{y\} \Longleftrightarrow x<y$. Thus, $x \sqsubset_{1} \mathbb{R}-\{y\}$ does not imply $y \sqsubset_{1} \mathbb{R}-\{x\}$, so \sqsubset_{1} is not R_{0}, and thus $\left(\mathbb{R}, \sqsubset_{1}, \sqsubset_{2}\right)$ is not bi- R_{0}. By Theorem 3.4, we see that $c l_{\sqsubset_{1}}(x)=[x, \infty)$. Let \sqsubset_{2} be the dual topogenous order arising from the right-ray topology. Now $C(x)=c l_{\sqsubset_{1}}(x) \cap c_{\sqsubset_{2}}(x)=\{x\}$, so by Theorem 6.7, $\left(\mathbb{R}, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0}.

For another example, let \sqsubset_{1} be Császár's \sqsubset_{ε} with $\varepsilon=1$. That is, $A \sqsubset_{1} B$ if and only if $(-\infty, \sup A+1) \subseteq B$. Let \sqsubset_{2} be the dual of \sqsubset_{1}, with $A \sqsubset_{2} B$ if and only if $(\inf A-1, \infty) \subseteq B$. Now $x \sqsubset_{1} \mathbb{R}-\{y\} \Longleftrightarrow(-\infty, x+1) \subseteq \mathbb{R}-\{y\} \Longleftrightarrow x+1 \leq y$, which does not imply $\left(y+1<x \Longleftrightarrow y \sqsubset_{1} \mathbb{R}-\{x\}\right)$. Thus, \sqsubset_{1} is not R_{0}. Similarly, \sqsubset_{2} is not R_{0}. Since $y \sqsubset_{2} \mathbb{R}-\{x\} \Longleftrightarrow$ $y-1 \geq x \Longleftrightarrow x \sqsubset_{1} \mathbb{R}-\{y\}$, we see that $\left(\mathbb{R}, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0}. Furthermore, $\left(\mathbb{R}, \sqsubset_{1}, \sqsubset_{2}\right)$ is sup- R_{0}. Indeed, we will show that in this case, $x \sqsubset^{q} X-\{y\}$ if and only if $x \sqsubset_{i} X-\{y\}$ for $i=1$ or $i=2$. Suppose $x \sqsubset^{q} X-\{y\}$. Then $x=\bigcup_{i=1}^{m}\left(A_{i}^{1} \cap A_{i}^{2}\right)$ and $X-\{y\}=\bigcup_{i=1}^{m}\left(B_{i}^{1} \cap B_{i}^{2}\right)$ where $A_{i}^{j} \sqsubset_{j} B_{i}^{j}(i=1, \ldots, m, j=1,2)$. Now $x \sqsubset_{1} A_{i}^{1} \sqsubset_{1} B_{i}^{1} \Rightarrow x \sqsubset_{1} B_{i}^{1} \Rightarrow(-\infty, x+1) \subseteq B_{i}^{1}$. Using \sqsubset_{2}, we get $(x-1, \infty) \subseteq B_{i}^{2}$. Now $y \notin B_{i}^{1} \cap B_{i}^{2}$ implies either $y \geq x+1$ or $y \leq x-1$, and thus $x \sqsubset_{1} X-\{y\}$ or $x \sqsubset_{2} X-\{y\}$. Conversely, if $x \sqsubset_{1} X-\{y\}$ or $x \sqsubset_{2} X-\{y\}$ then $x \sqsubset^{q} X-\{y\}$ since $\sqsubset_{1}, \sqsubset_{2} \subseteq \sqsubset^{q}$.

The result below suggests that Reilly pairwise T_{1} is the appropriate choice in bitopogenous spaces.

Theorem 6.13. A bitopogenous space $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is Reilly pairwise T_{1} if and only if it is pairwise R_{0} and pairwise T_{0}.

Proof. Suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise R_{0} and pairwise T_{0} and $x \neq y$. We wish to show $x \sqsubset_{1}$ $X-\{y\}$ and $y \sqsubset_{2} X-\{x\}$. Suppose to the contrary $x \not \subset_{1} X-\{y\}$ or $y \not \subset_{2} X-\{x\}$. The cases are dual, so suppose $x \not \subset_{1} X-\{y\}$. By pairwise $T_{0}, y \sqsubset_{2} X-\{x\}$ so Theorem 3.4 gives $y \notin c l_{\sqsubset_{2}}\{x\}$. Now pairwise R_{0} gives $x \notin c l_{\sqsubset_{1}}\{y\}$, and Theorem 3.4 gives the contradiction $x \sqsubset_{1} X-\{y\}$.

Conversely, suppose $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is Reilly pairwise T_{1}. Then $\left(X, \sqsubset_{1}, \sqsubset_{2}\right)$ is pairwise T_{0}. To see it is pairwise R_{0}, suppose $x \in c l_{\sqsubset_{1}}\{y\}$. Then $x \not \chi_{1} X-\{y\}$ and Reilly pairwise T_{1} implies $x=y$, so $y \in c l_{\sqsubset_{2}}\{x\}$.

References

[1] BURGESS, D. C. J.-FITZPATRICK, M.: Syntopogenous preordered spaces, Math. Proc. Cambridge Philos. Soc. 80(1) (1976) 71-79.
[2] CSÁSZÁR, Á.: Foundations of general topology, Pergamon Press, Macmillan Company, NY, 1963.
[3] CSÁSZÁR, Á.: Finite extensions of topogenities, Acta Math. Hungar. 89 (1-2) (2000) 55-69.
[4] DAVIS, A. S.: Indexed systems of neighborhoods for general topological spaces, The Amer. Math. Monthly 68 (9) (1961), 886-893.
[5] BELAID, K.-ECHI, O.-LAZAAR, S.: $T_{(\alpha, \beta)}$-spaces and the Wallman compactification, Internat. J. Math. \& Math. Sci. 68 (2004) 3717-3735.
[6] HOLGATE, D.-IRAGI, M.: Quasi-uniform and syntopogenous structures on categories, Topology Appl. 263 (2019), 16-25.
[7] LAL, S.: Pairwise concepts in bitopological spaces, J. Austral. Math. Soc. Ser. A 26 (2) (1978), 241-250.
[8] MCCLUSKEY, A.-KÜNZI, H.-P.-RICHMOND, T.: Ordered separation axioms and the Wallman ordered compactification, Publ. Math. Debrecen 73 (3-4) (2008) 361-377.
[9] MISRA, D. N.-DUBE, K. K.: Pairwise R_{0}-space, Annales de la Société Scientifique de Bruxelles 87 (I), (1973), 3-15.
[10] MRŠEVIĆ, M.: On pairwise R_{0} and pairwise R_{1} bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (78) (1986) 141-148.
[11] MURDESHWAR, M. G.-NAIMPALLY, S. A.: Quasi-uniform topological spaces, Noordhoof, Groningen, 1966.
[12] REILLY, I.: On pairwise R_{0} spaces, Annales de la Société Scientifique de Bruxelles 88 (III) (1974) 293-296.
[13] ŠLAPAL, J.: A note on F-topologies, Math. Nachr. 141 (1989), 283-287.
[14] ŠLAPAL, J.: On categories of ordered sets with a closure operator, Publ. Math. Debrecen 78 (1) (2011), 61-69.
[15] SWART, J.: Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetensch. Proc., Ser. A 74 Indag. Math. 33 (1971) 135-145.
[16] RICHMOND, T.: General Topology: An Introduction, De Gruyter, Berlin, 2020.

```
* Western Kentucky University
    Department of Mathematics
    Bowling Green, KY 42104
    USA
    Email address: tom.richmond@wku.edu
** Brno University of Technology
    Institute of Mathematics
    TechnickÁ 2, }616\mathrm{ 69, Brno
    CZECH REPUBLIC
    Email address: slapal@fme.vutbr.cz
```


[^0]: 2010 Mathematics Subject Classification. Primary 54A15, 54E55, 54D10.
 Key words and phrases. Topogenous order, closure operator, bitopogenous space, lower separation axioms.
 The authors acknowledge the support by Brno University of Technology, the first author from the project MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962 and the second one from the Specific Research project no. FSI-S-23-8161.

