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ABSTRACT

This paper presents the model for pattern formation in the course of thermodynamically
stable and unstable crystal growth from vapor phase, which is in uenced by rapid spatio-
temporal variations of substrate and Im temperature. In the model, such variations result
from the interference heating of a substrate by weak pulsed laser beams. In the thermo-
dynamically stable case the surface relaxational dynamics is in uenced by surface di usion
mass transport from hot to cold regions of a substrate; this leads to accumulation of mass
in cold regions and depletion in hot regions. In the thermodynamically unstable case the
underlying faceting (spinodal) instability coupled to di usion mass uxes from hot to cold
regions leads to formation of pyramidal surface structures. The scale of stationary coarsened
structure increases as the separation distance of the adjacent interference fringes decreases
(relative to the intrinsic faceting wave length, which is determined by the balance between
the corner regularization energies and the surface energy anisotropy). On the other hand,
the coarsening rates decrease with decreasing the separation distance, at least at particu-
lar typical deposition strength. The deposition strength and the separation distance of the
interference fringes determine the transient and stationary pattern shape. By e ectively
redistributing adatoms on a substrate through the enhanced, spatially inhomogeneous di u-
sion, the interference heating mechanism delays, for large separation distances, the onset of
spatiotemporal chaos as the growth rate increases.

INTRODUCTION

Recent experimental work done in the group of Ramki Kalyanaraman at Washington
University [1]-[3] demonstrates that temperature eld could be used to engineer morpholo-
gies. These researchers observed spatial organization of structures on growing surfaces of
thin solid Ims irradiated by weak, pulsed laser beams that are made to interfere on a sub-
strate. It was suggested that the non-isothermal surface di usion resulting from the rapid
spatio-temporal variations of the surface temperature is the cause of pattern formation.

It is well-known that on thermodynamically unstable crystal surfaces structures are
formed by the combined action of the deposition, faceting instability and coarsening of
faceted domains [4]-[6]. Thus the proposed model for morphology evolution in the presence
of weak spatial non-uniformity of the surface heating is formulated in terms of regularized, un-
stable evolutionary partial di erential equation (PDE). The interference heating is factored
in through Arrhenius dependence of the adatom di usivity on temperature, and manifests
in space-dependent coe cients (temperature dependence of the surface energy anisotropy
can be included in a similar fashion). The evolutionary PDE can be reduced to high-order,
convective Cahn-Hilliard equation in the special case of constant temperature and after long
wave length approximation. The proposed model allows morphological evolution studies of
two-dimensional surfaces as a function of external parameters, such as the separation dis-
tance of the interference fringes, interference strength, radiation power intensity and surface
absorptivity.



THEORY

Considered is a 141 case corresponding to a two-dimensional crystal with a one-dimensional
surface. The evolution of the crystal surface z = h(z t) is described by the following mass
conservation PDE [7]-[10]:
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where all subscripts denote di erentiation, F' is vertical rate of growth of the planar surface
(hy = 0) by deposition along the normal (typical to vapor-phase growth), A= 2 Dy o,
is the curvature and [11]
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In the Eq. (2) is the angle that the local unit normal to the crystal surface makes with
the [01] crystalline direction, s is the arc length along the surface (note that s=(1+
h%) 12 x), 4 is the energy of forming new vicinal surface of unit dimension and is the
strength of the surface energy anisotropy ( ), see for instance Ref. [12] and references
therein:
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= const > 0 is the small regularization parameter having units of energy. The dependence
of the di usivity on temperature is shown explicitly in the evolution Eq. (1). Other quantities
have the usual meaning. The Eq. (1) is fourth-order when the anisotropy is weak ( <1 15)
and the regularization is not needed, e.g. = 0 and sixth-order when the anisotropy is
strong (1 15) and the equation must be regularized.

Far from the melting threshold the pulsed laser irradiation gives rise to a quasistationary
state in which the temperature of the irradiated section of a surface uctuates about the mean
value Ty with a frequency  of source pulse repetition. For metallic lms, a quasistationary
state is achieved often after as few as ten pulses. The heat conduction problem in Ims
uniformly irradiated by laser pulses was solved in Refs. [13]-[15]. These results, as well
as the experiments [13] describe the quasi-steady state on a surface and quantify transient
temperature distributions. To this end, assume that the entire surface of the horizontal
dimension L is irradiated.

Eq. (1) admits the trivial solution

h=h(t)=Ft+hy hy=const (4)

at any temperature 7" = T'(x t). This solution corresponds to a crystal with the planar
surface growing vertically at constant rate F'. Without loss of generality the reference value
ho can be chosen zero. Introduce the perturbation h = h(x t) of the steady state (4), and
the simultaneous perturbation of the mean temperature eld, T = T, + T'(x t), such that



To close the model, a realistic form for the temperature perturbation T'(x t) is required.
The following is used in the 141 case:

T(x t) = (Qpcos t)(1+ Q1cosqr) (5)

This form approximates well [3] the one-dimensional interference fringes from the two pulsed
beams, which originate from a split single pulsed laser beam. 0 < Q) 1 determines the
magnitude of small temporal oscillations about Ty due to the pulsed nature of irradiation
and 0 < @)1 < 1 determines the di erence of the mean temperatures at regions (fringes) of
constructive and destructive interference. Distance d between centers of two adjacent fringes
is related to the angle that two beams form. If this angle is 2 , thend =2 ¢= (2sin ),
where is the wave length of a laser pulse [1]. Parameters Qg @)1 and the mean temperature
Ty are known functions of the radiation power intensity, surface absorptivity at the radiation
wavelength, and the thermophysical and other optical characteristics of the material [13, 14].
To model the surface evolution on the long time scale associated with formation of exper-
imentally detectable structures, it is su cient to use the Eq. (1) where the coe cients that
involve the temperature perturbation are averaged over the period of pulse repetition, 2
In other words, the di erentiation at the left hand side of the Eq. (1) is treated as being
with respect to the slow time associated with the typical long time scale of morphological
changes due to surface di usion, while the form (5) involves the fast time associated with
the short duration of a laser pulse. Averaging is with respect to the fast time during which
the lm height is constant. Finally, the Eq. (1) is nondimensionalized, expanded in powers
of the small quantity T" up to second order, and averaged:
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where f = F (L ), B= Aexp( E, kTy) ( L*kT,) and = (E; kTy)* 2 2B, kTy+1.
The form of W( ) does not change upon non-dimensionalization, except o in the Eq.
(2) is replaced by = ( ¢L?). These parameters are positive. The Eq. (6) is written in

the frame of reference moving in the z direction with the speed F', and the tilde sign over
h is omitted. The averaged square of the temperature perturbation in the Eq. (6) is given
by T? = Q2%(1+ Q;cos?2 qx)2 2, where the 2 -based scale for the non-dimensional wave
number g = ¢L is adopted for convenience. Note that the Eq. (6) involves the coe cients
that depend on the space coordinate, x. This makes analytical solution di cult and the
numerical methods are preferred.

For computations, the discretization in space was implemented by the novel nested nite
volume method, and the time-stepping was performed using the RADAU code, which is
based on implicit Runge-Kutta methods with variable order (5, 9, 13) [17]. I showed in [16]
that this numerical method is more robust than standard nite di erences, and also much
more accurate in computing faceting with large slopes, deposition, surface di usion, and
non-uniform heating.



RESULTS AND DISCUSSION

Case of isotropic surface energy ( = 0)

= 0 implies = 0 and thus W =1 in the Eq. (6) (see Eq. (2)). The faceting instability is
absent and the initially present surface morphology slowly decays while the average surface
height increases due to deposition. Interestingly, the non-uniformity of the surface tempera-
ture results in the non-uniformity of the decay rates along the surface. As an example of such
morphology evolution, Figure 1 shows the relaxation of the cosine curve z = 0 02 cos 8 z for
the case ¢ = 2 (thus the temperature maximum occurs at the rst, third, and fth (last)
maxima of the surface, and the temperature minimum occurs at the second and fourth max-
ima of the surface). One can see coarsening of the perturbation - the material accumulates
near z = 0 25 and x = 0 75 due to di usive transport from the adjacent hotter regions near
x =0 05 and 1. This is exactly the mechanism Zhang & Kalyanaraman proposed as part of
the explanation of their experimental data. The accumulation of material at colder regions
results in slowly decaying surface spikes.
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Figure 1: Relaxation of the perturbation in the thermodynamically stable case (e.g., surface
energy isotropic) and when (separation distance of the interference fringes) = 2*(wave length
of the surface perturbation). (a) f = 10 5. (b) f = 10 °. Other parameters are B =
5 1018 =43 Qy=05 Q;=0099.

Case of strongly anisotropic surface energy ( > 1 15)

Values = 05 and = 00275 were chosen for the simulations in this section. (Corre-
sponding to these values, the wave length of the most unstable linear mode is max =
2 3 2(15 1) =005 ][18]). The evolution of small amplitude random perturbation in
the domain 0z 20 was computed for values of f in [10 '® 10 °] and ¢ in [0 25 8]. Grid
spacing is x = 0 02.

Figures 2(a)-(f) show the surface shapes for di erent non-dimensional separation distance
of the interference fringes d = 1 ¢, where ¢ = 025 05 1 2 4 8, respectively. The surface
shapes are shown at ¢t = 2 10° (non-dimensional). f = 10 " and Qy = 05 Q; = 0 99.
Each Figure was con rmed by ve runs with di erent random initial conditions. All shapes
except the one in Figure 2(f) are stationary.

The surface shown in Figure 2(f) evolves chaotically in time-space. Similar chaotic states
are computed in Ref. [6], where the long wave length isothermal model is developed; there,
they appear when too strong deposition destroys faceting and coarsening process induced
by the strong surface energy anisotropy. Here, it is seen that the presence of the surface
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Figure 2: Surface shapes at time ¢ = 2 10° in the thermodynamically unstable case.
q=1(a)025 ()05 (¢) 1 (d)2 (e) 4 (f) 8. The roughness on tops and walls of pyramids is
the residual of the underlying faceting instability with wave length max =0 5.

temperature non-uniformity inhibits the chaotic dynamics when the ratio d max is not too
small. For the stationary pattern to emerge, the hot and cold regions may even be contained
within the faceting wave length, as is the case in Figure 2(e), where d max = 05. But
when there is too many such regions within the faceting wave length, the mass transfers there
destroy faceting and coarsening leading to chaos; for example, d max = 0 25 in Figure 2(f).
For small values of ¢, see Figures 2(a),(b) the number of structures per length of sample is
dictated by g-value; in other words, the intrinsic facets coarsen in the pattern with induced

wave length. However, with the increase of ¢ (equivalently, with the decrease of d so that
d max) the coarsening scenario changes. One observes the formation of a few (two or
three) large structures which span many d and max wave lengths. The morphology of these
large structures is di erent the from sharply terminated pyramids in Figures 2(a),(b). The
large structures are truncated pyramids, where the roughness on the tops and walls is the
residual of the underlying faceting instability with the faceting wave length max = 0 5. Such
states do not appear in the long wave length isothermal case for any value of the deposition
parameter. Also note that in contrast to the just described non-isothermal arrangement, the



pyramids in the isothermal case are always separated by the faceting wave length when there
is no deposition [18] or, in the presence of (weak) deposition, by the distance which re ects
balance between KPZ-nonlinearity and the surface tension anisotropy causing the faceting
decomposition [6].
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