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A continuum �Mullins-type� model is proposed for the nonisothermal, isotropic evolution of a crystal surface
on which mass transport occurs by surface diffusion. The departure from constant temperature is assumed
induced by incident pulsed radiation. It has been shown experimentally and theoretically �see, e.g., Yakunkin,
High Temp. 26, 585 �1988�; Yilbas and Kalyon, J. Phys. D. 34, 222 �2001�� that such a heating mode gives
rise to the quasistationary regime, in which the surface temperature of a thick solid film oscillates about the
mean value with the pulse repetition frequency. The implications of oscillatory driving with high frequency
values on relaxation of surface ripples are examined; in particular, the traveling wave solutions with decreasing
amplitude are detected numerically. Pulsed heating also results in faster smoothing of the ripple, compared to
the case when the surface is at constant temperature which is same as the mean temperature in the pulsed
heating mode. Impact on ripple shape is minor for ripple amplitudes considered.
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I. INTRODUCTION

Diffusion of adsorbed atoms �adatoms� on surfaces of
crystalline thin films is the primary mass transport mecha-
nism responsible for morphological evolution. Surface diffu-
sion coupled to an impinging flux of particles �crystal
growth� �1–3� or lattice mismatch stress �4,5� often result in
the formation of patterns such as, for example, the pyramidal
structures �6,7�.

Recently, experimental efforts have been undertaken on
assessing effects of pulsed laser beams on surface diffusion
of adatoms and molecules �8–10�. These studies characterize
the motion of individual particles across the surface using
scanning tunneling microscopy and focus primarily on the
role of electronic excitation in diffusion. The electronically
excited motion is often accompanied by thermally excited
motion; the separation of two effects is often difficult.

In a separate line of research, oscillatory driving of sur-
face diffusion has been proposed �11� as an alternative route
for pattern formation, “with two basic advantages: First, pat-
terning and growth are separated, so that morphology is not a
function of the growth process. Second, it offers better con-
trol of the structure. An in situ and real-time control of the
pattern becomes possible, opening a wide range of new ap-
plications.” In Ref. �11� a pulsed laser has been suggested as
potentially capable of inducing the oscillatory driving. Work
�11� employs a mesoscopic step-flow model for the crystal
surface. The adatom diffusivity, kinetic attachment coeffi-
cients, and equilibrium concentration are assumed periodi-
cally oscillating in time about the respective mean values.
Slope selection, surface metastability, and driving frequency-
dependent surface stability have been found. Thus oscillatory
driving of crystal surfaces has the potential to demonstrate
rich nonlinear phenomena similar to one found in other
branches of physics; the inverted pendulum problem and pat-
tern formation in oscillatory driven fluids and granular media
are two of the many examples �see references in Ref. �11��.

This paper theoretically studies �using the macroscopic,
continuum framework� the implications of oscillatory
changes of surface temperature on morphological evolution

of a crystal surface by surface diffusion. It is assumed that
surface temperature modulation is caused by a low-energy,
pulsed laser beam �12�. The classical problem of smoothing
of a surface ripple �13� has been chosen for a study.

The paper proceeds as follows. The mathematical model
is formulated in Sec. II. In Sec. II A the model form for the
temperature perturbation at the surface is discussed, and the
equation averaging procedure is employed. Section II B in-
troduces physical parameters, nondimensionalization, and
the numerical method. Results are presented in Sec. III, and
conclusions in Sec. IV.

II. MATHEMATICAL MODEL

Considered is a model 1+1 case corresponding to a two-
dimensional crystal with a one-dimensional surface. The
evolution of the crystal surface z=h�x , t� is described by the
following phenomenological partial differential equation
�13–15�:

ht

�1 + hx
2�1/2 = V = − � · js , �1�

where V is the normal velocity of the curve representing the
surface, �=const the atomic volume, j the surface diffusion
flux, and s the arclength along the curve. Subscripts denote
differentiation in all equations in the paper.

The surface mass flux j is given by

j = −
D�T��

kT
�s, �2�

where �=const is the surface density of adatoms, k the Bolt-
zmann constant, T the temperature,

D�T� = D0 exp�− Ed

kT
� �3�

the surface diffusivity of adatoms, and
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� = ��� �4�

the surface chemical potential. In Eq. �3�, D0=const and Ed
=const are the prefactor and activation energy, respectively.
In Eq. �4�, � is the isotropic surface energy density and

� =
− hxx

�1 + hx
2�3/2 �5�

the surface mean curvature. Equation �2� holds for the re-
gime where the kinetics of mass transport is determined by
diffusion on terraces.

Substitution of Eqs. �2�–�5� into Eq. �1� and using � /�s
= �1+hx

2�−1/2� /�x yields the following fourth-order surface
evolution equation:

ht = B
�

�x
� exp�− Ed/�kT��

kT
�1 + hx

2�−1/2	 − hxx

�1 + hx
2�3/2


x
� ,

�6�

where B=�2�D0�
The horizontal dimension of the spatially modulated

�rippled� surface is L. � is a constant integer number of ripple
wavelengths per L. Then �=L /� is the wavelength of the
ripple and q=2� /� is the wave number. Assume the entire
surface is irradiated by laser pulses.

Equation �6� admits trivial solution �equilibrium state�

h = h0 = const �7�

at any temperature T=T�x , t�. Without loss of generality h0

=0 can be chosen. When pulsed laser heating is applied to
the surface for a sufficiently long period of time, a quasista-
tionary regime develops, which is characterized by the mean
temperature T0=const	Ta �where Ta is ambient tempera-
ture; for instance, Ta could be the temperature of vacuum
furnace� and small temperature oscillations on this back-
ground �16,17�. Consider perturbation of the equilibrium

state h= h̃�x , t�, and simultaneous perturbation of the mean

temperature field, T=T0+ T̃�x , t�, such that

� T̃�x,t�
T0

� � T̂�x,t� 
 1, h̃�x,0� = H0 cos qx , �8�

and h̃�x , t� is not necessarily small.

Next, the quotient exp(−Ed / �kT0�1+ T̂��) / �kT0�1+ T̂�� in

Eq. �6� is expanded in powers of small quantity T̂�x , t�, and
the expression in parenthesis is differentiated with respect to
x. This yields

ht = BPn−1�T̂�T̂x�1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x

+ BPn�T̂�

���1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x
�

x

, �9�

where Pn�T̂� and Pn−1�T̂�=dPn /dT̂ are polynomials of de-

grees n and n−1, respectively. The tilde sign over h̃�x , t� has
been omitted. Cases n=2, 4, 6 will be examined; such choice
is explained in the next section. The coefficients of the poly-

nomials Pn and Pn−1 are �aj� and �jaj� , j=0,… ,n, respec-
tively, viz.

a6 = a0� g0
6

720
−

g0
5

20
+

5

8
g0

4 −
10

3
g0

3 +
15

2
g0

2 − 6g0 + 1� ,

�10�

a5 = a0� g0
5

120
−

5

24
g0

4 +
5

3
g0

3 − 5g0
2 + 5g0 + 24� , �11�

a4 = a0� g0
4

24
−

5

6
g0

3 + 3g0
2 − 4g0 + 1�,

a3 = a0�g0
3

6
−

3

2
g0

2 + 3g0 − 1� , �12�

a2 = a0�g0
2

2
− 2g0 + 1�, a1 = a0�g0 − 1� �13�

and

a0 =
exp�− g0�

kT0
, �14�

where

g0 =
Ed

kT0
. �15�

The coefficients have dimension of inverse energy.
Equation �9� is general in the sense that it admits any

small perturbation of the mean surface temperature field T0.
The particular choice for the perturbation is discussed in the
next section.

A. Model for the temperature perturbation

Pulsed irradiation of a crystal surface gives rise to a qua-
sistationary state in which temperature at the targeted spot
fluctuates about the mean value T0 with a frequency equal to
the source pulse repetition frequency �. With the goal of
modeling the effects produced by pulsed irradiation the sim-

plest model form for the perturbation T̂�x , t� is postulated:

T̂�x,t� = �cos �t��Q0 + Q1h* cos�qx + �� , �16�

where 0�Q0 ,Q1h*
1,h* is nondimensionalized h �see Sec.
II B for units�, and  is the phase shift of the modulation
with respect to the ripple. The values of T0 ,Q0, and Q1 are
determined by the impulsive power density and the mean
power density of the radiation, the absorbivity of the surface
at the radiation wavelength, and the thermophysical and op-
tical characteristics of the material �16–19�.

The periodicity in time of the perturbation is the conse-
quence of the well-developed quasistationary regime, as the
result of the pulsed irradiation. The two terms in Eq. �16�
model the quasistationary regime on the rippled, evolving
surface of a solid film. Note that as h*→0 only the first term
remains, which describes the quasistationary regime on a
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flat, horizontal, and stationary surface. The proportionality of
the amplitude of the second term to first power of h*, and the
spatially periodic form are assumed after Refs. �18,19�,
where the related theories of formation of laser-induced sur-
face ripples �LISRs� were developed; see also the review
paper �20�.

Works �18,19� and others justify the spatially periodic sur-
face temperature as follows. First, it is assumed that an initial
sinusoidal temperature disturbance of period � exists on the
initial surface. This disturbance “may be caused by the
height variation itself, by the poor crystalline quality of the
surface layer, or by any other intrinsic or extrinsic cause. …
Since the index of refraction of such a surface is temperature
dependent, it will also follow a similar periodic variation.
The index variation then acts like a ripple, and the light
intensity, and therefore the power absorbed, also becomes
modulated with the same period. The phase of this modula-
tion, however, may or may not reinforce the initial tempera-
ture disturbance” �19�. Models of LISRs based on the as-
sumption of the spatially periodic surface temperature during
irradiation of the rippled surface match experimental obser-
vations reasonably well �20�. The experimental validation of
this assumption has been provided in �21�. The key differ-
ence between LISRs and the subject under consideration in
this work must be emphasized here: LISRs are due to surface
melting and recrystallization under the influence of high-
energy irradiation, which are not allowed for surface-
diffusion driven morphological evolution of the surface
shape. It must be noted also that the laser beam-surface in-
teraction mode resulting in the spatially periodic surface
temperature field �namely, the interference between incident
and scattered light waves� is not universal; quite often there
is no such interference and in such cases the second term in
Eq. �16� cannot be justified �22�. The case of a spatially
uniform temperature field �Q1=0� is considered in Sec. III B.
This case provides the most transparent illustration of the
smoothing aspect of the pulsed heating effect.

It must be noted that the simple form of the time-
dependent amplitude in Eq. �16� is the idealization required
in order to obtain a tractable and computationally robust
model. The oscillograms of the amplitude of temperature
perturbation on the flat specimen surface presented in Ref.
�16� are not exactly sinusoidal, and neither are the oscillo-
grams of the output laser pulse; in fact, the output from the
laser is not easily fitted by a simple mathematical expression.
Also, at z=0 the analytical solution of the one-dimensional
�along negative segment of the z axis� heat conduction prob-
lem calculated in Ref. �16� is infinite Fourier series, whose
terms have amplitudes decaying as j−2 �j=1,… ,� is the
term number�. It is natural to expect that the difference be-
tween the model amplitude and the amplitude calculated in
Ref. �16� may only be responsible for a small quantitative
difference in results. A somewhat more complicated analyti-
cal solution of a similar heat conduction problem under con-
ditions of pulsed laser heating of a surface was obtained in
Ref. �17�. There, “in order to obtain a constant temperature
heating condition at the surface, repetitive laser pulses with
constructively decaying peak intensities are considered.” The
temporal variation of the surface temperature is periodic with
the shape close to sinusoidal when this constraint is relaxed.

Both solutions assume a flat surface of the specimen �rough-
ness is not taken into account�. However, the quasistationary
state does not cease to exist on the rough surface. In other
words, for “large” times the one-dimensional heat conduc-
tion equation has oscillatory solutions when the boundary
condition is imposed on the surface z=h�x��0, or even on
z=h�x , t�, rather than on z=0; for the latter case to hold, the
characteristic time of the development of the quasistationary
regime must be much less than the characteristic time of
surface morphological evolution. Assume it is indeed so
�23�.

The problem �9�–�16� has two time scales. These scales
are the period of pulse repetition tp=1/�, and the character-
istic time of ripple relaxation at constant T=T0. This latter
scale is the time it takes the surface diffusion to diminish the
initial amplitude of the ripple by e times, and it is given by
ts= �Ba0q4�−1. The case of high pulse repetition frequency
will be considered, so that tp
 ts. In this limit the ripple
relaxation on the long time scale ts can be studied using Eq.

�9� where the time- and space-periodic functions BPn−1�T̂�T̂x

and BPn�T̂� are averaged over the temporal period of oscil-
lation. The averaging procedure reduces to zero such terms

in the latter function that correspond to odd powers of T̂�x , t�,
and also such terms in the former function that correspond to

an odd sum of powers of T̂�x , t� and T̂x�x , t�. That explains
the choice of even polynomial degree for these functions.
The averaged evolution Eq. �9� reads

ht = − BU�x,t��1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x

+ BV�x,t���1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x
�

x

, �17�

where

U�x,t� = �a2�x� � u2�x,t� if n = 2,

u2�x,t� + �3/2�a4�x�
3 � u4�x,t� if n = 4,

u4�x,t� + �15/8�a6�x�
5 if n = 6,

�
�18�

V�x,t� = �a0 + �1/2�a2�2 � v2�x,t� if n = 2,

v2�x,t� + �3/8�a4�4 � v4�x,t� if n = 4,

v4�x,t� + �5/16�a6�6 if n = 6,
�

�19�

and

��x,t� = Q0 + Q1h* cos�qx + � . �20�

A frequently used framework for studying surface evolu-
tion problems is the small-slope approximation, which is ap-
plicable when the surface slope hx
1 for all times. If this is
the case, the governing PDE can be expanded in powers of
the small quantity hx. This procedure, especially when it is
followed by linearization, often leads to simplification of the
equation. Then, the solution could be attempted analytically.
For the problem under consideration in this paper, the small-
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slope approximation is of no particular advantage since it
generally does not yield the analytically tractable problem
due to the complicated structure of functions U and V in Eq.
�17�. However, notice that in the case n=1 �which corre-
sponds to the first order of the expansion in the temperature

perturbation, such that P0=a1 and P1=a0+a1T̂� the small-
slope, averaged evolution equation describes the isothermal
relaxation of the ripple to the equilibrium state h0=0, at tem-
perature T0:

ht = Ba0Y�x,t� , �21�

where

Y�x,t� = − hxxxx + 3hxx
3 + 10hxxhxxxhx + 2hxxxxhx

2. �22�

Equation �22� is correct to sixth order, since � /�x��
1. In
particular, Eq. �21� yields the monotonous exponential decay
solution in the linear approximation Y�x , t�=−hxxxx:

h�x,t� = H0 exp�− Ba0q4t�cos qx , �23�

which preserves the initial sinusoidal shape of the ripple �see
Eq. �8��. This solution was obtained by Mullins �13�. The
nontrivial small-slope, averaged evolution equation results at

least in the second order of the expansion in T̂�x , t�. This
corresponds to the second order nontrivial, averaged surface
flux in the step-flow model of Ref. �11�.

Next, the transparent illustration of the origin of the
pulsed heating effect is provided.

Let D*�T�=exp�−Ed / �kT�� / �kT�, refer to Eq. �6�. Let Q1

=0 for simplicity. Expanding D*�T� in powers of T̃ about T0

up to second order, then noticing that T̃=T0T̂ and averaging
over 2� /� yields

�D*�T�� = D*�T0� +
1

2
D*��T0��1

2
T0

2Q0
2� , �24�

where �·� denotes averaged quantity. Since

D*��T0� =
2a2

T0
2 , �25�

Eq. �24� becomes

�D*�T�� = D*�T0� +
1

2
a2Q0

2. �26�

Thus it is expected that the pulsed heating results, primarily,
in increased effective diffusivity �since a2 is positive for the
typical material system under consideration, see the next sec-
tion� and therefore, in faster morphological relaxation.

B. Choice of parameters

Equation �17� is now nondimensionalized; 1 /� is used for
unit of time and L for unit of length. The nondimensional
equation is �star sign has been omitted�

ht = − B̄	Ū�x,t��1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x

− V̄�x,t���1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x
�

x

 , �27�

where

Ū�x,t� = ��̄x�̄ � ū2�x,t� if n = 2,

ū2�x,t� + �3/2�A2�̄x�̄
3 � ū4�x,t� if n = 4,

ū4�x,t� + �15/8�A3�̄x�̄
5 if n = 6,

�
�28�

V̄�x,t� = �A1 + �1/2��̄2 � v̄2�x,t� if n = 2,

v̄2�x,t� + �3/8�A2�̄4 � v̄4�x,t� if n = 4,

v̄4�x,t� + �5/16�A3�̄6 if n = 6,
�

�29�

�̄�x,t� = Q0 + Q1h cos�q̄x + �, q̄ = 2�� , �30�

and B̄=a2B / ��L4� ,A1=a0 /a2 ,A2=a4 /a2, and A3=a6 /a2.
GaAs on GaAs diffusion at T0=800 K is chosen as an

example; the characteristic value of the activation energy at
this temperature is Ed�0.8 eV �24�. This yields g0
=11.4317 from Eq. �15� and, using Eqs. �10�–�14�, A1
=0.023,A2=−4.28, and A3=−1.27. Value 0.14 cm2/s for the
diffusivity prefactor D0 is obtained using the above cited
Ed ,T0 values, and a value of 1.5�10−6 cm2/s for diffusivity
�24�. Also, at typical values L=10 �m,�=2�10−23 cm3,�
=103 erg/cm2,�=1015 cm−2, and �=104 s−1, one obtains tp

=10−4 s , ts=4.5�102 s, and B̄�2.4�10−11, given �=4.
Since the value of � determines the wave number of the
ripple and thus the characteristic time ts, it has been chosen
to ensure ts� tp. This admissibility criteria allows � as large
as �50.

The method of lines approach was used for computations.
Standard second-order finite differencing in space was
implemented, and time stepping was done using the implicit
Runge-Kutta method �25�. Boundary conditions at x=0, 1
are periodic. By closely examining Eq. �27� it become clear
that values =0,� /2 , ±� /4 are special in the sense that
they can either change signs of periodic coefficients, or turn
the sine function into the cosine function �or vice versa�.
Thus only these values were tried in numerical simulation.
At t=0 the ripple shape is given by Eq. �8�, where the initial
amplitude H0 is replaced by nondimensional initial ampli-

tude H̄0=H0 /L. H̄0 was taken as 0.02 or 0.08. In all cases the
runs were terminated when amplitude at a crest reached the

cutoff amplitude 0.1H̄0. For all numerical experiments spa-
tial resolution is �x=0.002, and relative and absolute toler-
ances of the implicit RK solver are 10−10 and 10−8, respec-
tively.

The following nondimensional equation will be used for

comparison purposes when H̄0=0.02:
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ht = ���1 + hx
2�−1/2	 − hxx

�1 + hx
2�3/2


x
�

x

, �31�

� =
B

�L4

exp�− gi�
kT0�1 + iQ0�

, i = 0, ± 1. �32�

Equation �31� describes the isothermal surface evolution
�that is, when pulsed heating is not applied�. The three situ-
ations distinguished next all correspond to the surface tem-
perature held elevated over ambient temperature.

�1� i=0 and T=T0. In this case �= B̄A1=5.52�10−13.
�2� i=1 and T=T0�1+Q0�. The parameters for this case

are g1=10.3896 and �=1.4�10−12, given Q0=0.1. The case
corresponds to the almost maximal attainable surface tem-
perature in the pulsed heating regime �since the magnitude of
the second term in Eq. �30� is less than or equal to one-tenth
of the magnitude of the first term there, for Q0=0.1,Q1
=0.5, and for h�0.02�.

�3� i=−1 and T=T0�1−Q0�. This corresponds to the al-
most minimal attainable surface temperature in the case of
pulsed heating. The parameters for this case are g−1
=12.6984 and �=1.7�10−13, given Q0=0.1.

1 /� has been used as a unit of time for nondimensional-
ization of the original equation only for convenience, e.g., to
avoid introducing an additional nondimensional parameter
�of course, � does not have a physical meaning in the ab-
sence of pulsed heating�. Such a choice does not affect the
temporal or spatial evolution of the ripple.

III. RESULTS

A. Small amplitude case

Figure 1 shows the nondimensional amplitudes of the
ripple at crests computed using n=2, 4, and 6 terms of the
expansion in temperature perturbation. Also shown is the
amplitude when pulsed heating is off and the temperature is
constant T0 �refer to Eq. �31��. Figure 1 does not call for the
increase in the number of terms of the expansion beyond n
=2, since the n=4, 6 case results are nearly indistinguishable
from the n=2 case result. Nevertheless, n=6 will be used
throughout the rest of the paper; more than two terms of the
expansion may be needed in case of larger ripple amplitudes.
The shape of the ripple is the cosine function for all three
values of n, and also in the isothermal case.

Figure 2 compares the amplitude of the ripple in the
pulsed heating case to amplitudes in three isothermal cases.

Figure 3 shows the amplitudes for =0,� /2, and ±� /4.
For all four values of  the ripple shape is the cosine func-
tion at all times.

From Figs. 1–3 it can be seen that for any value of the
phase shift the ripple under the oscillatory driving about
mean temperature T0 relaxes faster than the ripple held at
constant temperature T0. Figure 3 shows that for Q0
=0.1,Q1=5.0 the relaxation is fastest in the case =0. In the
case Q0=0.1,Q1=0.5 the rates corresponding to all four val-
ues of  are almost same, and Fig. 2 shows this curve for
=0.

1. Traveling waves

In the numerical simulations with =� /2 , ±� /4 and suf-
ficiently large �but consistent with the formulation� values of
Q0 and Q1 the ripple undergoes the uniform translation to the
left or right with small but detectable speed. In other words,
the traveling wave with the decaying amplitude appears on
the surface. The direction of the traveling wave depends on
magnitudes of Q0 and Q1, as well as on the value of . For

FIG. 1. Test case �convergence study�. Comparison of ripple
amplitudes using Eq. �27� with n=2, 4, 6. Solid curve: pulsed heat-
ing is off and surface is at constant temperature T0. Q0=0.1,Q1

=0.5,=0.

FIG. 2. Comparison of ripple amplitudes for different heating
modes �see key�. All curves but the dashed one are computed using
the “isothermal” Eq. �31�. Q0=0.1,Q1=0.5,=0.
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instance, for =� /2 ,Q0=0.1 and Q1=2.5, 5.0 the traveling
wave direction is to the right, but the direction is opposite for
Q0=0.5 and Q1=2.5. Waves always travel in the opposite
directions for =� /4 and −� /4. For =0 the traveling wave
is absent for any values of Q0 and Q1. Recall that  measures
the horizontal shift of the temperature perturbation with re-
spect to the ripple. Thus from Fig. 3 the relaxation is the
fastest when extrema of the spatially periodic multiplier in
Eq. �16� occur at ripple extrema �=0�, as expected.

As an example, consider case =� /2 and Q0=0.1,Q1
=5.0. The absolute value of the nondimensional horizontal
displacement of the ripple vs nondimensional time is fitted
well by quadratic function d�t�=1.832�10−9t−1.029
�10−16t2. Thus the speed of the traveling wave is approxi-
mately linear,

Vwave�t� � 1.832 � 10−9 − 2.058 � 10−16t . �33�

The actual displacement has been measured by noticing the
amount of a shift from the line x=1�x=0� that the rightmost
�leftmost� point on the ripple incurs when the ripple under-
goes translation to left �right�.

At least in the special case described below, some insight
into the traveling wave solution can be obtained semianalyti-
cally. Let n=4 and formally assume the long-wave approxi-
mation, for which

h = �h1 + �2h2 + ¯ ,

�

�x
= �

�

�x1
+ �2 �

�x2
+ ¯ ,

�

�t
= �4 �

�t4
+ �5 �

�t5
+ ¯ ,

� 
 1. �34�

Then in the lowest fifth order in � Eq. �27� reduces to

ht = − B̄q̄Q0Q1�1 +
3

2
A2Q0

2�sin�q̄x + �hhxxx − B̄�A1 +
1

2
Q0

2

+
3

8
A2Q0

4�hxxxx, �35�

where the expansion indices have been omitted. Now, the
solution of Eq. �35� is sought in the form

h = p�t�cos q̄�, � = x + w�t�t . �36�

Substitution of Eq. �36� in Eq. �35� yields

�ṗ − Mp�cos q̄� − p�q̄�ẇt + w� + Np sin�q̄�� − wt�

+ �cos q̄��sin q̄� = 0, �37�

where

M = − B̄q̄4�A1 +
1

2
Q0

2 +
3

8
A2Q0

4� , �38�

N = − B̄q̄4Q0Q1�1 +
3

2
A2Q0

2� . �39�

Since cos q̄� and sin q̄� are linearly independent,

ṗ − Mp = 0, �40�

q̄�ẇt + w� + Np sin�q̄�� − wt� + �cos q̄� = 0. �41�

The solution of Eq. �40� with initial condition p�0�= H̄0 is

p�t� = H̄0 exp�Mt� , �42�

and thus Eq. �41� yields the following ODE for wave veloc-
ity w�t�:

ẇ = −
1

t �w +
N

q̄
H̄0 exp�Mt�sin�q̄x + �cos�q̄�x + wt��� ,

�43�

where variable x has been restored. M =−2.6658�10−7 and
N=4.4805�10−6 for parameter values of II B and consider x
fixed in Eq. �43�. The first term suggests that w behaves as
t−1, but it is the second term that in fact determines the char-
acteristic time scale of the decay of a speed of ripple lateral
motion. Equation �43� was integrated numerically from t
=10−12 to t=107 with zero initial condition and some values
of x in �0, 1�.

w=0 to machine precision for =0 and the ripple
extreme/zero points. w�0 for other points in �0, 1�. Thus in
the case =0 Eq. �36� implies relaxation in the absence of a
traveling wave.

w�0�	0� for =� /2 ,� /4�−� /4� and the ripple extreme
points; that is, the ripple extrema move to the right �left�. The
speed of the extreme points is �i� smaller for = ±� /4, com-
pared to the =� /2 case and �ii� same for =� /4 or −� /4.
For fixed  and different extreme points the function w�t� is
the same. All of the above matches completely the full simu-
lation of ripple relaxation. However, w=0 for ripple zero
points and any of the three  values. Thus unlike the simu-
lation of ripple relaxation, the solution obtained in the long

FIG. 3. Amplitude of the ripple given phase shift in Eq. �16�
either =0, or = ±� /4, or =� /2. Solid curve: pulsed heating is
off and surface is at constant temperature T0. Q0=0.1,Q1=5.0.
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wave approximation is not a traveling wave, but a lateral
ripple deformation that leaves ripple zero points at rest �self-
steepening�. Nevertheless, Fig. 4 shows the speed w�t� at
ripple extrema, together with the traveling wave speed, Eq.
�33�, and Fig. 5 shows the amplitude p�t� together with the
relaxation amplitude from the full simulation.

B. Large amplitude case

The main difference from the small amplitude case is the
shape of the ripple; it slightly deviates from the cosine func-

tion for amplitudes in the range 0.08–0.03 due to, primarily,
strong nonlinearity. The contribution of the pulsed heating
effect itself in shape deviation is present, but is very small

for H̄0=0.08 �that is, almost the same deviation occurs when
the pulsed heating is off and the surface is held at constant
temperature T0�. For smaller amplitudes the ripple shape is
indistinguishable from the consine function, as discussed
above. Figure 6 shows both shapes as t increases. For initial
amplitudes larger than 0.08 to 0.09 the computation is gen-
erally unsuccessful due to strong numerical stiffness.

1. Rate of relaxation: Study with varying Q0 ,Q1

Figure 7 compares relaxation amplitudes resulting from
the temperature perturbation with amplitude Q0=0.1, 0.075,

FIG. 4. Speed of ripple displacement. Functions Vwave�t� and
w�t� are defined in the text. =� /2 ,Q0=0.1,Q1=5.0.

FIG. 5. Amplitude of the ripple. Solid curve: traveling wave
amplitude from full simulation. Dashed curve: Eq. �42�. 
=� /2 ,Q0=0.1,Q1=5.0.

FIG. 6. Ripple smoothing for large initial amplitude and pulsed
heating. Dotted curves: the ripple. Solid curves: the cosine function.
Q0=0.1,Q1=0.5.

FIG. 7. Comparison of amplitudes for pulsed heating cases with
decreasing values of Q0. =0,Q1=0.5. Solid curve: pulsed heating
is off and surface is at constant temperature T0.
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0.05, and 0.025 and fixed amplitude Q1=0.5. As Q0→0, the
rate of relaxation of the oscillatory driven ripple approaches
the rate of relaxation of the isothermal ripple at T=T0.

Finally, case Q1=0 in Eq. �16� is investigated. This case
corresponds to time-periodic and spatially uniform tempera-
ture perturbation. It can be seen that U�x , t�=0 and V�x , t�
=const in Eq. �17�, and therefore the evolution equation has
the same form as in the isothermal case. As discussed in II A,
the effect of such temperature perturbation is simply the in-
crease of value of the characteristic �positive� decay constant
from its value at constant temperature T0. Amplitudes of the
ripple, which result when the ripple is smoothed by applying

pulsed heating where T̂ is given by Eq. �16�, and by reduced
Eq. �16� where Q1=0 are shown in Fig. 8. It can be seen that
the ripple relaxes faster when the temperature perturbation is

spatially periodic with =0. Pulsed heating where T̂ is spa-
tially periodic with =� /2 is almost as effective as the spa-
tially uniform mode. This is expected since for =� /2 the
extrema of the spatially periodic multiplier in Eq. �16� occur
almost at ripple zero points �since the ripple undergoes a

slow translation to the right� and thus the effect on the rate of
relaxation is small.

IV. CONCLUSIONS

In summary, this paper suggests a simple, nonlinear con-
tinuum model of the driven evolution by nonisothermal sur-
face diffusion �where the temperature oscillations about
mean value T0 are induced by a pulsed laser beam� of the
preexisted surface morphology. The numerical simulations
demonstrate that rates of smoothing are faster than the clas-
sical rate for the isothermal, no oscillations case T=T0. Also,
the unexpected traveling wave mode of relaxation is detected
for some values of the parameter governing the horizontal
shift of the �time-oscillatory� temperature perturbation with
respect to the ripple.

The promising extensions of this study are:
�i� the inclusion of anisotropic �and temperature-

dependent� surface energy density, which has been shown to
play a crucial role in the formation of surface structures �3�;

�ii� the inclusion of deposition of material on the surface.
Of special interest is interplay of pulsed �oscillatory� depo-
sition and oscillatory driving through the pulsed heating. The
two mechanisms acting simultaneously may create instabili-
ties. It has been pointed out in �11� that such instabilities may
be new and not observed before. This situation reminds the
two-frequency driving of a fluid surface �26�;

�iii� the inclusion of additional spatial dimension, with or
without anisotropy and temperature dependence of the sur-
face tension, and deposition. In particular, the attachment-
detachment limited kinetics �27� in 2+1 dimension has been
shown to give rise to unusual surface relaxation dynamics
�28�; and

�iv� the inclusion of stress field and its coupling to non-
uniform temperature field on the surface and in the bulk film.

The model and its extensions may prove useful in the
theory and practice of crystal growth �pulsed laser deposition
and laser assisted chemical vapor deposition�, laser etching,
and pattern formation on surfaces �self and induced assembly
of surface structures�, which have important applications in
the fabrication of micro- and nano-electronic devices.

ACKNOWLEDGMENT

The author gratefully acknowledges Professor Brian
Spencer for reading the manuscript in preparation and for the
discussion.

�1� M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517 �1994�.
�2� Y. Saito and M. Uwaha, J. Phys. Soc. Jpn. 65, 3576 �1996�.
�3� T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyash-

chy, and P. W. Voorhees, Phys. Rev. E 67, 021606 �2003�.
�4� H. Gao and W. D. Nix, Annu. Rev. Mater. Sci. 29, 173 �1999�.
�5� B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev.

Lett. 67, 3696 �1991�.
�6� V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125

�1999�.
�7� J. Krug, Adv. Phys. 46, 139 �1997�.
�8� L. Bartels, F. Wang, D. Moller, E. Knoesel, and T. F. Heinz,

Science 305, 648 �2004�.
�9� F. Fournier, W. Zheng, S. Carrez, H. Dubost, and B. Bourgui-

gnon, Surf. Sci. 528, 177 �2003�.
�10� H. J. Ernst, F. Charra, and L. Douillard, Science 279, 679

�1998�.

FIG. 8. Comparison of amplitudes for pulsed heating cases T̂

= T̂�x , t� �Eq. �16� with Q0=0.1,Q1=5.0, and =0,� /2�, and T̂

= T̂�t�=Q0 cos �t ,Q0=0.1. Solid curve: pulsed heating is off and
surface is at constant temperature T0.

M. KHENNER PHYSICAL REVIEW E 72, 011604 �2005�

011604-8



�11� O. Pierre-Louis and M. I. Haftel, Phys. Rev. Lett. 87, 048701
�2001�.

�12� “Low-energy” in this context means that the incident energy is
insufficient to cause �i� removal of adatoms from the surface,
�ii� creation of surface defects, and �iii� melting of the surface.

�13� W. W. Mullins, J. Appl. Phys. 30, 77 �1959�.
�14� W. W. Mullins, J. Appl. Phys. 28, 333 �1957�.
�15� J. W. Cahn and J. E. Taylor, Acta Metall. Mater. 42, 1045

�1994�.
�16� M. M. Yakunkin, High Temp. 26, 585 �1988�.
�17� B. S. Yilbas and M. Kalyon, J. Phys. D 34, 222 �2001�.
�18� S. R. J. Brueck and D. J. Erlich, Phys. Rev. Lett. 48, 1678

�1982�.
�19� Z. Guosheng, P. M. Fauchet, and A. E. Siegman, Phys. Rev. B

26, 5366 �1982�.
�20� N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, J.

Phys. D 23, 884 �1990�.
�21� N. C. Kerr, S. E. Clark, and D.. C. Emony, Appl. Opt. 28,

3718 �1989�.

�22� V. I. Emel’yanov, Quantum Electron. 29, 561 �1999�.
�23� Figures and data of Ref. �17� �where the material surface is not

identified explicitly, but most likely it is metallic� show that
the quasistationary state is achieved after just 3 to 4 laser
pulses. Assume, for safety, that 400 laser pulses deliver the
quasistationary state to the semiconductor surface, and �

=104 s−1 �16�. Then, the characteristic time for the develop-
ment of the quasistationary regime is �4�10−2. This is four
orders of magnitude less than the characteristic time of ripple
relaxation, ts �see Sec. II B�.

�24� M. Kasu and N. Kobayashi, Appl. Phys. Lett. 67, 2842 �1995�.
�25� E. Hairer and G. Wanner, J. Comput. Appl. Math. 111, 93

�1999�.
�26� W. Zhang and J. Vinals, J. Fluid Mech. 341, 225 �1997�.
�27� To microscopic steps on a crystal surface.
�28� V. B. Shenoy, A. Ramasubramaniam, H. Ramanarayan, D. T.

Tambe, W.-L. Chan, and E. Chason, Phys. Rev. Lett. 92,
256101 �2004�.

INFLUENCE OF PULSED LASER HEATING ON… PHYSICAL REVIEW E 72, 011604 �2005�

011604-9


