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Comparative Study of a Solid Film Dewetting
in an Attractive Substrate Potentials

with the Exponential and the Algebraic Decay
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Abstract. We compare dewetting characteristics of a thin nonwetting solid film in the absence of
stress, for two models of a wetting potential: the exponential and the algebraic. The exponential
model is a one-parameter (r) model, and the algebraic model is a two-parameter (r, m) model,
where r is the ratio of the characteristic wetting length to the height of the unperturbed film, and m
is the exponent of h (film height) in a smooth function that interpolates the system’s surface energy
above and below the film-substrate interface at z = 0. The exponential model gives monotonically
decreasing (with h) wetting chemical potential, while this dependence is monotonic only for the
m = 1 case of the algebraic model. Linear stability analysis of the planar equilibrium surface is
performed. Simulations of the surface dynamics in the strongly nonlinear regime (large deviations
from the planar equilibrium) and for large surface energy anisotropies demonstrate that for any m
the film is less prone to dewetting when it is governed by the algebraic model. Quasiequilibrium
states similar to the one found in the exponential model [15] exist in the algebraic model as well,
and the film morphologies are similar.
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1. Introduction
Dewetting of lattice-matched ultrathin solid films (such as the sub-10 nm Si film on the SiO2 sub-
strate) was recently observed in experiments at temperatures around 800◦C [30, 32]. Presumably,
the cause for film dewetting is a long-range, attractive film-substrate interaction (also called wet-
ting interaction) which amplifies perturbations of the planar film surface and makes the film height
decrease locally until the surface reaches the substrate, resulting in the formation of an array of
islands. At this most general level of description dewetting of solid films is similar to dewetting
of liquid films (which has been studied for many years [20, 22]), the only difference is the nature
of the mass transport, i.e. the thermally activated surface diffusion of adatoms in the former case
vs. the fluid flow in the latter case. There is, however, two determinative reasons of as to why
the dynamics of dewetting in these systems is qualitatively different. One reason is the nonzero
(and generally, strong) anisotropy of the solid film surface energy (tension) which is not present in
liquids. As has been shown by the author in Refs. [14, 15], faceting of the surface due to strong
anisotropy opposes the tendency of the film to dewet. Another reason is “geometrical”, meaning
that a planar surface of the as-deposited solid film may feature local defects of arbitrary shape
protruding arbitrarily deep into the film (i.e., the pinholes). Since the attractive substrate potential
decreases with the film height, its influence is stronger on deep pinholes, which therefore dewet
faster. In contrast to shallow pinholes the morphology of the tip is often different from the mor-
phology of other parts of the surface, i.e. the surface away from the tip may undergo formation of
a hill-and-valley structure due to faceting [14, 15].

These and other differences as well as importance to technologies such as the design and manu-
facture of solid thin-film devices, make dewetting of solid films a process worth studying. In Refs.
[14, 15] analytical and computational studies are performed of the two-dimensional PDE-based
model, which incorporates the two-layer wetting potential with the exponential decay. Similar
models were studied in the context of quantum dots self-assembly [4, 5, 8, 9, 17, 21]. Note that
the two-layer potential model is appropriate for ultrathin solid films, while for thicker films the van
der Waals potential has been shown to be important [29]. In this paper the model of Refs. [14, 15]
is extended to the case of the two-layer wetting potential with a variable-rate algebraic decay, and
comparisons of the two situations are performed. The models are studied using the linear stability
analysis, as well as the computations of the arbitrary deviation/slope surface dynamics.

2. Problem Formulation
The governing equation for the free one-dimensional (1D) surface z = h(x, t), evolving by surface
diffusion, has the form

ht =
ΩDν

kT

∂

∂x

(
(1 + h2

x)
−1/2∂µ

∂x

)
, (2.1)

where h is the height of the film above the substrate, Ω is the atomic volume, D the adatoms
diffusivity, ν the adatoms surface density, k the Boltzmann constant, T the absolute temperature,
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and µ = µ(κ) + µ(w) the surface chemical potential. Here µ(κ) is the regular contribution due to the
surface mean curvature κ [19]. Also (1+h2

x)
−1/2 = cos θ, where θ is the angle that the unit surface

normal makes with the [01] crystalline direction, along which is the z-axis. (The x-axis is along
the [10] direction.) Thus θ measures the orientation of the surface with respect to the underlying
crystal structure. Note throughout the paper the subscripts x, t, s, u and θ denote differentiation.

The wetting chemical potential

µ(w) = Ω
(
1 + h2

x

)−1/2 ∂γ

∂h
, (2.2)

where γ is the height-dependent surface energy of the film-substrate interface. In the two-layer
exponential wetting model [5]

γ(h, θ) = γ(f)(θ) +
(
γS − γ(f)(θ)

)
exp (−h/`), h > 0. (2.3)

In the two-layer algebraic wetting model [25]

γ(h, θ) =
1

2

(
γ(f)(θ) + γS

)
+

1

2

(
γ(f)(θ)− γS

)
f(h/`), lim

h→∞
f(h/`) = 1, lim

h→−∞
f(h/`) = −1.

(2.4)
Here γS = const. is the surface energy density of the substrate in the absence of the film, and
` is the characteristic wetting length. γ(f)(θ) is the energy of the film surface, assumed strongly
anisotropic. In the exponential model γ(h, θ) → γ(f)(θ) as h → ∞, and γ(h, θ) → γS as h → 0.
In the algebraic model f(h/`) is such that (i) the correct surface energies, γ(f)(θ) and γS , are
recovered as h → ±∞, and (ii) approach to the limiting value +1 as h →∞ is an algebraic power.
(Of course, negative film height has no physical meaning, thus formally in the substrate domain h
must be replaced by z in Eq. (2.4).) The suitable generic form is [16, 25]:

f(h/`) =
2

π
arctan

[(
h

`

)m]
, m = 1, 3, 5, . . . (2.5)

which has the expansion

f(h/`) = 1− 2

π
(h/`)−m + . . . as h →∞. (2.6)

Note that in the limit h → 0 the exponential and the algebraic models give γ = γS and γ =(
γ(f)(θ) + γS

)
/2, respectively. These results follow from the ‘one-sided’ (‘two-sided’) nature of

the the corresponding boundary layer models for the smooth transition in surface energy above
(across) the substrate surface z = 0, over a small length scale `.

γ(f)(θ) is taken in the form

γ(f)(θ) = γ0(1 + εγ cos 4θ) +
δ

2
κ2 ≡ γp(θ) +

δ

2
κ2, (2.7)

where γ0 is the mean value of the film surface energy in the absence of the substrate potential
(equivalently, the surface energy of a very thick film), εγ determines the degree of anisotropy,
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and δ is the small non-negative regularization parameter having units of energy. The δ-term in
Eq. (2.7) makes the evolution equation (2.1) mathematically well-posed for strong anisotropy
[1, 2, 6, 7, 18, 26, 28]. (The anisotropy is weak when 0 < εγ < 1/15 and strong when εγ ≥ 1/15.
δ = 0 in the former case. In the latter case the polar plot of γ(f)(θ) has cusps at the orientations that
are missing from the equilibrium Wulff shape and the surface stiffness γ(f)+γ

(f)
θθ is negative at these

orientations [11, 12]. Thus the evolution equation is ill-posed unless regularized [1, 6].) The form
(2.7) assumes that the surface energy is maximum in the [01] direction. With the regularization in
place, the curvature contribution to the chemical potential has the standard form

µ(κ) = Ω

[
(γ + γθθ)κ− δ

(
κ3

2
+ κss

)]
, (2.8)

where κ = −hxx(1 + h2
x)
−3/2, s is the arclength along the surface [∂/∂s = (cos θ)∂/∂x] and the

expressions for γ(h, θ) read

Exponential model : γ(h, θ) = γp(θ) + (γS − γp(θ)) exp (−h/`), (2.9)

Algebraic model : γ(h, θ) =
1

2
(γp(θ) + γS) +

1

2
(γp(θ)− γS) f(h/`), (2.10)

with γp(θ) stated in Eq. (2.7). By using Eqs. (2.9) and (2.10) instead of Eqs. (2.3) and (2.4) we
disregard the contribution of the wetting terms (exponential or inverse tangent) to the regularization
in Eq. (2.8). Similarly, by using Eqs. (2.9) and (2.10) in Eq. (2.2), we disregard the contribution
of the regularization term δκ2/2 to µ(w). (See Refs. [14, 15] for the justification of this approach.)

Using the height of the planar unperturbed film, h0, as the length scale, the dimensionless
expressions for the chemical potentials read:
Exponential model:

µ(κ) =

(
γ̄p(θ) +

∂2γ̄p

∂θ2

)
(1− exp (−h/r)) κ + Γ exp (−h/r)κ−∆

(
κ3

2
+ κss

)
,(2.11a)

µ(w) = (γ̄p(θ)− Γ)
exp (−h/r)

r
cos θ. (2.11b)

Algebraic model:

µ(κ) =
1

2

(
γ̄p(θ) +

∂2γ̄p

∂θ2

)
(1 + f (h/r)) κ +

Γ

2
(1− f (h/r)) κ−∆

(
κ3

2
+ κss

)
,(2.12a)

µ(w) =
1

2
(γ̄p(θ)− Γ)

df

dh
cos θ, (2.12b)

where

f(h/r) =
2

π
arctan

[(
h

r

)m]
, m = 1, 3, 5, . . . , γ̄p(θ) = 1 + εγ cos 4θ. (2.13)

Also, r = `/h0 is the ratio of the characteristic wetting length to the unperturbed film height,
Γ = γS/γ0 is the ratio of the mean surface energy of the film to the substrate surface energy, and
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Figure 1: The reduced dimensionless wetting chemical potential µ(w) = exp (−h/r)/2r. This
formula is obtained when γ̄p is taken isotropic, hx is taken zero and Γ = 0.5 in Eq. (2.11b). Solid
line: r = 0.1; dash line: r = 1.

∆ = δ/(γ0h
2
0) is the non-dimensional regularization parameter. Figures 1 and 2 show µ(w) for both

models. Note that for the algebraic model µ(w) ∼ 1/hm+1 for h À 1, as follows from Eqs. (2.2),
(2.4) and (2.6).

Now using h2
0/D as the time scale, and the small-slope expansion in powers of ε = |∂/∂x| ¿ 1,

the asymptotic dimensionless evolution equation (2.1) reads:

ht = B
∂

∂x

(
P (1)

κ −∆P (2)
κ + Pw

)
, (2.14)

where B = Ω2νγ0/(kTh2
0) is the Mullins coefficient and P

(2)
κ = −hxxxxx.

In the exponential model, the terms P
(1)
κ and Pw read:

P (1)
κ = Λ1hxxx + Λ2h

2
xxhx + Λ3hxxxh

2
x − exp (−h/r) [(Γ + Λ1) hxxx + o.t.] , (2.15)

Pw =
exp (−h/r)

r

[
a2hxxhx

(
1− 5h2

x

)
+ r−1hx

(
a1 + (2a3 − 3a1) h2

x + a4h
4
x

)]
, (2.16)

where Λ1 = 15εγ−1, Λ2 = 3−285εγ, Λ3 = 2−150εγ, a1 = Γ−1−εγ, a2 = Γ−1−17εγ, a3 =
Γ − 1 + 3εγ, a4 = Γ − 1 − 25εγ . Notation o.t. (meaning other terms) in the second part of Eq.
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Figure 2: The reduced dimensionless wetting chemical potential µ(w) = (1/4)df/dh, where f is
given by Eq. (2.13). This formula is obtained when γ̄p is taken isotropic, hx is taken zero and
Γ = 0.5 in Eq. (2.12b). Also r = 0.1. Solid line: m = 1; dash line: m = 3; dash-dot line: m = 5.

(2.15) (which is proportional to the exponent and which stems from wetting interaction), and in
the following Eqs. (2.17), (2.18) stands for many omitted terms that do not contribute to linear
stability. Note that the non-negative Λ1 signals that the surface energy anisotropy is strong.

In the algebraic model the terms P
(1)
κ and Pw read:

P (1)
κ =

hxxx

2π (1 + (h/r)2m)

[
2
{
Γ + Λ1 + a5(h/r)2m

}
arctan [(h/r)m]−

πa6

(
1 + (h/r)2m

)]
+ o.t., (2.17)

Pw =
m

π
a1

(h/r)m hx

h2
(
1 + (h/r)2m)2

[
1−m + (1 + m)(h/r)2m

]
+ o.t., (2.18)

where a5 = Γ− 1 + 15εγ and a6 = Γ + 1− 15εγ .
For computations of the surface evolution (Section 3) we use the parametric equations and

the marker particle method. The 1D surface is specified as Υ(x(u, t), z(u, t)), where u is the
parameter. x and z represent the coordinates of a marker particle on a surface, which are governed
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by two coupled dimensionless PDEs [3, 13, 23, 24]:

xt = V
1

g
zu, (2.19a)

zt = −V
1

g
xu. (2.19b)

Here V = B
(
µ

(κ)
ss + µ

(w)
ss

)
is the normal velocity of the surface, and g = ds/du =

√
x2

u + z2
u is

the metric function. It can be easily shown that Eqs. (2.19) are equivalent to dimensionless Eq.
(2.1) when the surface is non-overhanging (a graph of h = h(x) at all times). (Note that in this
case u ≡ x and ∂/∂s = g−1∂/∂u = (1 + h2

x)
−1/2∂/∂x.) When the surface develops steep slope,

the accurate computation using Eq. (2.1) requires a fine grid, and when the surface overhangs, Eq.
(2.1) does not make sense. Eqs. (2.19) and the marker particle method allow to circumvent these
problems, and thus this combination is preferred for computation of evolving general surfaces.

3. Linear Stability Analysis of the Planar Surface

3.1. Exponential Model
We assume strong anisotropy and linearize Eq. (2.14) about the equilibrium h = 1. For the
perturbation ξ(x, t) we obtain

ξt = B
(
Λ1ξxxxx + ∆ξxxxxxx + exp (−1/r)

[
r−2a1ξxx − (Γ + Λ1)ξxxxx

])
. (3.1)

Taking ξ = eikx+ωt gives

ω(k) = B
[
(Λ1 − exp (−1/r) (Γ + Λ1)) k4 −∆k6 − exp (−1/r)r−2a1k

2
]
. (3.2)

Note that taking the limit as r → 0 in Eq. (3.2) recovers the dispersion relation in the absence of
wetting interaction with the substrate, ω(k) = B [Λ1k

4 −∆k6]. It follows from Eq. (3.2) that the
equilibrium surface is unstable (ω(k) > 0) to perturbations with the wavenumbers 0 < k < kc,
where

k2
c = (2∆)−1 [Λ1 − exp (−1/r) (Γ + Λ1) +

(
(Λ1 − exp (−1/r) (Γ + Λ1))

2 − 4∆ exp (−1/r)r−2a1

)1/2
]
. (3.3)

Note that the radical at the right-hand side of Eq. (3.3) always exists when a1 < 0, which turns out
to be the necessary condition for a nonwetting film [14]. Figure 3 shows the sketch of ω(k). It is
interesting that the k2-term in Eq. (3.2) coming from Pw (Eq. (2.16)) makes the film less stable for
a1 < 0, but the wetting potential contribution to P

(1)
κ in Eq. (2.15) makes the surface more stable

since the corresponding k4-term is negative in Eq. (3.2). Clearly, due to negative exponent this
stabilizing influence is small when r is small.
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Figure 3: Sketch of the linear growth rate ω(k). Perturbations with wavenumbers 0 < k < kc are
unstable and may grow nonlinearly until the film ruptures.

3.2. Algebraic Model
Eq. (2.14) gives

ω(k) = B

[
2 {Γ + Λ1 + a5r

−2m}A0 − πa6 (1 + r−2m)

2π (1 + r−2m)
k4 −∆k6−

m [1−m + (1 + m)r−2m]

πrm (1 + r−2m)2 a1k
2

]
, (3.4)

where A0 = arctan [(1/r)m].
The cut-off wavenumber is compared in Figure 4 for both models and the three values of m.

For m = 1, kc tends to zero asymptotically, while for m = 3, 5 it becomes zero at r slightly
larger than one. Thus the m = 1 case is qualitatively similar to the exponential model. Comparing
the m = 1 case to the exponential model, it can be seen that for r < 0.5 the surface is more
stable in the former case, and less stable for r > 0.5. Comparing the m = 3, 5 cases to the
exponential model, it can be seen that for small values or r the interval of instability is the same
for both models, for intermediate values of r the interval is larger for the algebraic model, and
for r >∼ 1 the surface governed by the algebraic model is absolutely stable, while there is still a
narrow interval of long-wave instability in the exponential model.
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Figure 4: Plots of the square of the critical wavenumber vs. r. Γ = 0.5, εγ = 1/12, ∆ = 0.005.
Solid line: exponential model; dash line: algebraic model with m = 1; dash-dot line: algebraic
model with m = 3; dot line: algebraic model with m = 5. (Abrupt termination of the dash-dot
and dot lines is the artifact of the plotting software. We confirmed that these lines continue to
intersection with the r-axis.)

4. Numerical Results for the Large-Amplitude Initial Defor-
mation (Pinhole Defect)

In this section the parameters are chosen as follows: r = 0.1, Γ = 0.5, εγ = 1/12, ∆ = 0.005.
Following the method of lines approach, Eqs. (2.19) are discretized in the parameter u using
second-order finite differences and the time-stepping is performed by the implicit Runge-Kutta
solver RADAU [10]. Initially u ≡ x, but periodically (usually after every few tens of the time
steps) the surface is reparametrized so that u becomes the arclength, and the positions of the marker
particles are recomputed accordingly. This prevents marker particles from coming too close or too
far apart in the course of the surface evolution.

We compute the dynamic morphology and its rate of evolution towards either film rupture or the
quasiequilibrium state, which is characterized by the coarsening in time hill-and-valley structure at
the both sides of the residual defect, which dissipates with the much slower rate [15]. In Ref. [15]
it is shown for the exponential model that for r fixed, the outcome of the evolution (a rupture or a
hill-and-valley structure) depends on εγ and the initial condition, i.e. the width and the depth of the
pinhole. As will be seen, in the algebraic model the outcome depends also on m, which sets the
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rate of change of the wetting potential. The focus is on the rate of the extension of the pinhole tip
in the algebraic model, since the detailed computations for the exponential model are performed in
Ref. [15], and morphologies are similar in both models. Also, since the parameter domain of film
rupture is more narrow for the algebraic model, we investigate deep pinholes only.

The initial condition is taken as in Ref. [15], i.e. the Gaussian curve:

z(x, 0) = 1− d exp

[
−

(
x− 5

w

)2
]
, 0 ≤ x ≤ 10, 0 < d < 1. (4.1)

Note that the length of the computational domain equals to ten times the unperturbed film height,
and the defect is positioned at the center of the domain. Periodic boundary conditions are used.

Figures 5 and 6 show the log-normal plots of the pinhole depth vs time, for d = 0.9 and
w = 2, 0.15, respectively. zm is the height of the surface at the tip of the pinhole. The wide
pinhole dewets for m = 1 only. (See Figure 5. Note that the exponential model predicts faster
dewetting.) Wetting potentials with m = 3 and m = 5 result in the quasiequilibrium at 0 < zm <
1. Quasiequilibrium means that zm (or, equivalently, the depth) changes very slow or not at all,
while the rest of the shape changes relatively fast. In the inset, for m = 3 one can see the onset of
the formation of the hill-and-valley structure near the endpoints of the domain; as has been noted
in the Introduction, this does not affect the pinhole depth. Interestingly, here the pinhole tip is blunt
at quasiequilibrium, while it is sharp in all examples computed for the exponential model [15]. In
contrast to the wide pinhole, the narrow pinhole does not dewet even for m = 1 (Figure 6) and in
all three cases evolves to quasiequilibrium.

It must be noted here that stable equilibrium (steady state) solutions have been numerically
found in the studies of a nonlinear stress-driven morphological instability of a solid film without
wetting interaction, by Spencer & Meiron [27] and by Xiang & E [31]. The problem under study
in this paper differs from the problem studied by these authors in that the instability is driven
not by stress but by wetting potential, and the surface energy is anisotropic. These instability
mechanisms have different physical origins and the process of morphological evolution in both
cases is similar but not the same. In particular, due to the presence of strong surface energy
anisotropy the equilibrium solution, when it occurs, is replaced by quasiequilibrium. The latter can
be viewed as the locally broken equilibrium. This violation of equilibrium occurs in the surface
regions away from the pinhole tip. There, an evolving hill-and-valley structure is energetically
favorable because the attraction to the substrate is weak.

Finally, we note that the slight decrease of the initial depth results in the termination of dewet-
ting even for wide pinholes. For instance, Figure 7 shows the case d = 0.7, w = 2. As can be
seen, there is no dewetting for neither value of m. The pinhole tip is attracted to the substrate
for a while, but then reverses the direction and will finally stabilize at a quasiequilibrium position.
Quasiequilibrium is achieved for the m = 5 case. For comparison, the exponential model predicts
dewetting even for the more shallow pinhole with d = 0.5 (see Figure 2(a) in Ref. [15]).

To summarize, we contrasted two PDE-based models of dewetting for nonwetting ultrathin
single-crystal films. It remains to be seen how these models compare to experiment. Detailed
experiments focusing on the dynamics of a single pinhole are yet to be performed. (The pub-
lished experiments [30, 32] describe very briefly the initial stages of film dewetting and proceed
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Figure 5: Kinetics (rate) data for the deep, wide pinhole (d = 0.9, w = 2). Line slope equals
the rate of the tip evolution. Solid lines: algebraic model. Dash line: exponential model. Inset:
Surface shapes at t = 1.8, for m = 1 (solid line) and m = 3 (dash-dot line).

to detailed study of the post-dewetting regimes, i.e. the hole widening, secondary instabilities and
material agglomeration.)
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