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Abstract – The linear dispersion relation for surface perturbations, as derived by Levine et al.,
Phys. Rev. B, 75 (2007) 205312, is extended to include a smooth surface energy anisotropy function
with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly
curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it
is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting
interaction alone results in complicated linear stability characteristics of strained and unstrained
solid films.
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Introduction. – Studies of the morphological instab-
ilities of thin solid films are a first step towards under-
standing complex phenomena such as the formation of
three-dimensional nanoscale islands in strained alloy
heteroepitaxy. Such studies became common after the
pioneering works of Asaro and Tiller [1], Grinfeld [2] and
Srolovitz [3]. The classical Asaro-Tiller-Grinfeld insta-
bility is one of a uniaxially stressed solid film on a rigid
infinite substrate. Its variants for the single-component
and alloy films on rigid as well as on deformable substrates
have been studied and this research continues. Reviews of
works on the single-component films have been published,
see for instance ref. [4].
Film-substrate wetting interaction is a relatively new
concept in the field of research on morphological insta-
bility and evolution. When surface slopes are not very
large, this additional wetting energy can be considered
a function of the local film thickness h, but not of
the slopes of h [5–7]. In refs. [8–11] and others it has
been shown that wetting interaction damps long-wave
instability modes in a certain range of film thickness,
thus changing the instability spectrum from long-wave
type to short-wave type. The latter mode of insta-
bility is more relevant to the process of formation of

(a)E-mail: mikhail.khenner@wku.edu

island arrays [12]. In ref. [9] it is recognized that in the
presence of wetting interaction, the boundary conditions
that describe the stress balance at the film free surface
and at the film-substrate interface must be augmented by
wetting stress terms —that are proportional to the rate
of change of the surface energy with h (see footnote 1).
Wetting stress and lattice-mismatch stress have different
origin, and the former may be present even when the
latter is absent. For wetting (non-wetting) films, the
solution of the elastic free-boundary problem with bound-
ary conditions that include wetting stress terms, results
in additional destabilizing (stabilizing) contributions in
the dispersion relation. Some stability characteristics
have been analyzed in ref. [9] within the framework of
long-wave approximation, where in addition the surface
energy is assumed isotropic. This letter extends that
work by adding strong anisotropy and considering not
only wetting films, but also non-wetting films. Here we
recognize that the film thickness and the wetting length
are two independent characteristic lengths, i.e. the former
length is determined by film deposition, while the latter

1Wetting stress is called conjoining (or disjoining) pressure when
studying the dynamics of thin liquid films on substrates [13,14]. This
pressure is partially responsible for the so-called spinodal instability,
which typically leads to film dewetting (rupture); for discussions of
spinodal instability, see for instance ref. [15] and references therein.
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one is determined by the molecular structure and prop-
erties of the film-substrate interface. Since the wetting
length may be, and normally is, less than the deposited
film thickness, the perturbation wavelengths may be
comparable to the film thickness but still much larger
than the wetting length. In this case the long-wavelength
approximation may hold with respect to the wetting
length, but not with respects to the film thickness. In the
fourth section we show that this approach reveals linear
stability features that, we believe, went unnoticed in prior
publications.

Problem statement. – Following refs. [9,16], we
consider a dislocation-free, one-dimensional, single-
crystal, epitaxially strained thin solid film in a wetting
interaction with a solid, semi-infinite elastic substrate.
The film surface z = h(x, t) evolves due to surface
diffusion. This evolution is described by
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where Ω is the atomic volume,D is the adatoms diffusivity,
N is the adatoms surface density, kT is the Boltzmann
factor, andM is the surface chemical potential [17]. The
latter has contributions from the elastic energy in the film,
the anisotropic surface energy, and a wetting interaction:
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where θ is the angle that the unit surface normal makes
with the reference crystalline direction, say [01] (chosen
along the z-axis, which is normal to the substrate), γ(h, θ)
is the height- and orientation-dependent surface energy, κ
is the curvature of the surface, S is the arclength along
the surface and hx is the surface slope (note, ∂/∂S =
(cos θ)∂/∂x= (1+h2x)

−1/2∂/∂x). The term proportional
to the small positive parameter δ is the regularization
that is required in view of ill-posedness of eq. (1) for
strong anisotropy, that is when ǫγ � 1/(m

2− 1) in eq. (4)
below [18–21]. Note also that the mixed derivative term
in eq. (2) is nonlinear and thus it has no impact on linear
stability.
In this letter we consider the two-layer exponential
model for the surface energy [5,7]:

γ(h, θ) = γt(θ)+ (γs− γt(θ)) exp(−h/ℓ), (3)

where γs is the surface energy of the substrate when there
is no film, ℓ is the characteristic wetting length, and γt(θ)
is the anisotropic surface energy of a thick film:

γt(θ) = γ0(1+ ǫγ cosmθ), ǫγ � 0. (4)

Here γ0 is the mean surface energy, ǫγ is the strength
of anisotropy and m is the integer parameter specifying

anisotropy type (i.e., four-fold, six-fold, etc.) By compar-
ison with experimental and ab initio computational stud-
ies the two-layer exponential model has been shown the
most accurate to-date [22,23]. In the absence of anisotropy,
γt = γ0 = const, and δ vanishes. δ is taken zero also at weak
anisotropy, ǫγ < 1/(m

2− 1). In reality, the maximum of
γt(θ) might occur at θ= β, where the non-zero angle β
is a misorientation from the reference direction. Without
significant loss of generality we assume β = 0 in eq. (4).
The expression for the elastic energy E(h) in eq. (2)
is derived in ref. [16] without accounting for wetting
interaction. Wetting interaction is considered in several
papers, including refs. [8–11,22,24–26] (in ref. [26] the
wetting effect arises not from the dependence of surface
energy on thickness, but from the thickness-dependent
elastic energy, which cannot be calculated from linear
elasticity theory). To this end, by combining expressions
derived by us in refs. [9,25] we state the dimensionless
linear growth rate in the longwave limit, kh0≪ 1 (where
k is the perturbation wave number and h0 is the uniform
thickness of unperturbed planar film):

ω(h0, k, µ, ǫ, ǫγ) =Aǫ
2 (µ+A1h0k) k

3

−Bǫ [µ (h0− 1)+h0 (B1h0−A1) k] k
3a exp(−h0)

+F
[

(Λ− (G+Λ) exp(−h0)) k
4−∆k6

−ak2 {exp(−h0)−B2a exp(−2h0)}
]

. (5)

ℓ has been chosen as the length scale and ℓ2/D as the time
scale. Here ǫ is the misfit strain in the film, and µ= µf/µs
is the ratio of the film shear modulus to the substrate
shear modulus. Other parameters are:

A=
8NΩ2αs (1+ νf )

2
µf

kTℓα2f
, B =

4NΩ2γ0αs (1+ νf ) νf
kTℓ2α2f

,

(6)

A1 =
2C1
αfαs

, B1 =
νfC2−αf
2αfαsνf

, B2 =
βfγ0
αfµf ℓ

, (7)

C1 = αf +αfβsµ−α
2
sµ
2, C2 = 4αf +3αfβsµ− 4α

2
sµ
2,
(8)

αf(s) = 2
(

1− νf(s)
)

, βf(s) = 1− 2νf(s), (9)

F =
NΩ2γ0
kTℓ2

, ∆=
δ

γ0ℓ2
, (10)

Λ=
(

m2− 1
)

ǫγ − 1, G= γs/γ0, a=G− 1− ǫγ . (11)

In eqs. (6)–(9) ν is Poisson’s ratio. Note the coupling of
wetting interaction and misfit strain through the term
proportional to ǫ (the second line of eq. (5)). This term,
responsible for breaking symmetry between compressive
and tensile stress states, drops out of the growth rate
in the absence of wetting interactions, h0→∞. In the
square brackets of this term, −µ and −A1h0k are the
contributions from the wetting stress; see also refs. [9,25].
Another contribution from the wetting stress is the term
proportional to exp(−2h0) in the square brackets in the
last line of the equation.
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Our goal is to elucidate the roles of anisotropy, wetting
interaction and wetting stress and to characterize film
stability in the space of dimensionless parameters h0, k, µ,
ǫ and ǫγ . Other material parameters will be fixed to their
most characteristic values. We choose the following values:
D= 1.5× 10−6 cm2/s, N = 1015 cm−2, Ω = 2× 10−23 cm3,
kT = 1.12× 10−13 erg, γ0 = 2× 10

3 erg/cm2, νf = 0.198,
νs = 0.217, µf = 10

12 erg/cm3, δ = 5× 10−12 erg, and
ℓ= 3× 10−8 cm. The value of the characteristic wetting
length is of the order of 1ML thickness for InAs
or Ge film [22]. We assume strong anisotropy, i.e.

ǫγ > 1/(m
2− 1)≡ ǫ

(c)
γ and thus Λ> 0. For strained films

considered in the fourth section, we choose m= 32 as
the most characteristic value [27]. However, as far as
the effect of anisotropy on linear stability is of interest,
similar results are obtained for other common values such
as m= 4 or m= 6. That is, choosing larger m simply
means that smaller values of ǫγ are above the critical

value ǫ
(c)
γ .Wetting films require a > 0 [25], thus we choose

γs = 2γ0, ǫ
(c)
γ < ǫγ < 1. For the analysis of non-wetting

films (a < 0), we choose γs = γ0/2, ǫγ > ǫ
(c)
γ . It is clear that

wetting stress terms (pointed out above) are destabilizing
(stabilizing) in wetting (non-wetting) films.

Films with wetting interaction and zero misfit

strain and wetting stress. – When misfit strain and
wetting stress are not present, eq. (5) reduces to

ω(h0, k, ǫγ) = F
[

(Λ− (G+Λ) exp(−h0)) k
4

− ∆k6− ak2 exp(−h0)
]

. (12)

First, we consider wetting films. It follows that the
perturbations with wave numbers larger than kc =

√

Λ/∆
cannot destabilize a film of any thickness. (Here, kc is not
the customary cut-off wave number, but is determined
from the condition ω < 0 for any h0.) However, in the
opposite case k < kc only the films of thickness that is

less than the critical, h
(c1)
0 , are stable:

h0 <h
(c1)
0 =− ln

Λk2−∆k4

a+(G+Λ)k2
. (13)

With ∆= 25/9 corresponding to the material parameters
stated above, m= 4, and ǫγ = 0.1, we obtain kc = 0.42.

Taking typical k= 0.1kc in eq. (13) gives h
(c1)
0 = 6.94,

which translates to the dimensional value of 7 ML.
Figure 1 shows the contour plot of h

(c1)
0 (k, ǫγ). It can

be seen that stronger anisotropy decreases h
(c1)
0 . We

notice also that strong anisotropy destabilizes (that is, the
contribution proportional to k4 in the square bracket of
eq. (12) is positive) only relatively thick films, such that

h0 >h
(c2)
0 =− ln

Λ

G+Λ
. (14)

For the chosen values, h
(c2)
0 = 1.6 ML. Such threshold-

type influence of strong anisotropy is distinctly different

2 34 56 78 9

0.0 0.2 0.4 0.6 0.8

0.08

0.10

0.12

0.14

0.16

0.18

0.20

k

�
�

Fig. 1: (Colour on-line) Contour plot of the critical thickness

h
(c1)
0 for strong anisotropy, ǫγ > ǫ

(c)
γ = 1/15.

from the simplified model in which wetting interaction
is absent. The latter model can be obtained by taking
h0→∞ in eq. (12), and thus this equation becomes
ω(k, ǫγ) = F (Λk

4−∆k6), from which it is clear that strong
anisotropy has destabilizing influence on a film of arbitrary
thickness. These findings to some extent echo refs. [22,26],
where the existence of the critical perturbation amplitude
that is necessary to destabilize a film in the presence of a
cusp in the surface energy γ(θ) (which is the case below the
roughening temperature), has been demonstrated. Thus if
a film is thin, critical amplitude may be unattainable and
the film will not be destabilized. However note that models
of refs. [22,26] do not allow staightforward separation of
the effects of surface energy and mismatch stress, and thus
our results cannot be easily compared to these papers.
Next, we consider non-wetting films. One example of

such material system may be the energetically driven
dewetting of silicon-on-insulator [28,29]. Repeating
the analysis and referring to the critical values shown
above, it follows that a film of any thickness is stable
with respect to perturbations with wave numbers

larger than max(kc, k
(u)
c ), where k

(u)
c =

√

−a/(G+Λ).

If kc < k < k
(u)
c , then the film is stable if h0 >h

(c1)
0

and unstable otherwise. If k
(u)
c < k < kc, then the film

is stable if h0 <h
(c1)
0 and unstable otherwise. Finally,

if k <min(kc, k
(u)
c ), then the film of any thickness is

unstable. With G= 0.5 and ǫγ = 0.1, k
(u)
c = 0.77> kc,

and therefore the second possibility, k
(u)
c < k < kc, must

be dismissed. Typically, the first scenario (kc < k < k
(u)
c )

holds, and thus there is a critical thickness below which
the film is unstable [10].
Results similar to those shown above for wetting and

non-wetting films can be obtained (numerically) with non-
zero wetting stress, since the negative exponent exp(−2h0)

26001-p3



M. Khenner et al.
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Fig. 2: Zero level curve of f(k, µ, h0) = µ(h0− 1)+h0(B1h0−
A1)k. (a) h0 = 2, (b) h0 = 3. To the left of each curve, the
symmetry-breaking term in the long-wave growth rate (5)
(second line) is stabilizing, to the right —destabilizing (when
a, ǫ > 0).

decays fast compared to the terms in eq. (12) that are
proportional to exp(−h0).

Wetting films with non-zero misfit strain and

wetting stress. – The situation presented in this section
is common for Stranski-Krastanov growth of epitaxial thin
films.
As we pointed out in the second section, in the presence
of misfit strain and wetting interaction, eq. (5) contains
the term that is proportional to the first power of misfit
strain. Whether this term is destabilizing or stabilizing
(for, say, ǫ > 0) depends on the sign of the expression
f(k, µ, h0) = µ(h0− 1)+h0(B1h0−A1)k. Only for suffi-
ciently small k and large µ this is positive. Then the second
term in eq. (5) is stabilizing as shown in fig. 2. Increasing
h0 makes the domain of stabilization smaller. As µ is in the
range 0.5–1.0 for a typical heteroepitaxial semiconductor
system, the coupling of misfit strain and wetting interac-
tion has stabilizing effect on an ultrathin film of thick-
ness of the order of several wetting lengths, for long-wave
perturbations. Note that the standard ǫ2-term is always
destabilizing for all perturbation wavelengths [16].
In order to demonstrate some effects of arbitrary
relation between wetting length, film thickness and
the perturbation wavelength, in conjunction with
strong anisotropy, we use next the full dimensional
growth rate expression involving hyperbolic func-
tions of kh (see footnote 2), where k, h are now the
dimensional wave number and mean thickness, respec-
tively. (Equation (5) emerges upon expansion of this
growth rate in powers of small dimensionless parameter
kh, retaining the dominant terms of the expansion

2Available on request from authors.
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Fig. 3: Neutral stability curves. (a) ǫγ = 0. r= 0.1 (solid), r= 1
(dash), r= 3 (dot). (b)–(d): ǫγ = 0.01. (b) r= 0.1, (c) r= 0.518,
(d) r= 1 (dashed), r= 3 (solid). Domains of surface stability
(instability) are marked by S (U).

(long-wave approximation), and non-dimensionalization.)
As in eq. (5), the full growth rate is quadratic in ǫ,
allowing one to explicitly determine the boundaries of
neutral stability, ω= 0, in the r-ǫ or u-ǫ planes. Here r
and u (dimensionless) are defined by h= rℓ, k= u(2π/ℓ).
Figure 3 shows neutral stability curves, in the u-ǫ plane,
for ǫγ = 0 and 0.01. (For the value m= 32 used in this

section, ǫ
(c)
γ = 0.001.) For all three values of a film thick-

ness in the former (isotropic) case, and for the small-
est value in the latter (strongly anisotropic) case, the
film is destabilized by short-wavelength perturbations,
u> 0.02, above some critical value of the misfit parame-
ter ǫ. Increasing film thickness in the isotropic case to
values as large as 50ℓ only makes the domain of stability
shrink. However, for larger film thickness in the strongly
anisotropic case (figs. 3(c), (d)) two stability domains
emerge separated by the domain of instability. The split-
ting of a single domain into two domains occurs at r= 0.5.
The size of stability domains decreases with increasing
film thickness. Overall, the film is less stable with increas-
ing anisotropy (as expected). Note that instability in
figs. 3(c), (d) is present for some u even when misfit is zero.
Responsible for this is the combined destabilizing effect of
anisotropy and wetting stress, which together overweigh
the stabilizing effect of the wetting layer; also see the
third section. Similar behaviour is observed for increas-
ing µ while keeping the thickness fixed. We also notice
that only the r= 0.1 case can be (probably) captured by
the long-wave approximation, as kh= 2πru= 0.38∼ 1 for
r= 0.1, u= 0.6, and is even larger for other values of r
in fig. 3. In order to characterize the horizontal spacing
between two stability domains in figs. 3(c), (d), in fig. 4
we plot the neutral stability curve corresponding to the
level ǫ= 0. It can be seen that for all reasonable r this
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Fig. 4: Neutral stability curves (see text). (a) ǫγ = 0.01,
(b) ǫγ = 0.014. The film is stable below each curve.

spacing does not exceed 0.3. For comparison, the case of
slightly larger anisotropy is also shown.
To summarize, we considered all combinations of

wetting interaction (through the exponential two-layer
model), lattice-mismatch and wetting strains, and strong
anisotropy. Our results demonstrate the complicated
linear stability of ultrathin films (h∼ 1 : 5 wetting
lengths). In particular, we show that extremely thin
(h∼ 1 : 2 wetting lengths), unstressed wetting films
are not destabilized by arbitrarily strong anisotropy.
Anisotropic, stressed wetting films are destabilized by any
level of mismatch stress, but only in the narrow range of
perturbation wave numbers. Such films can remain stable
with respect to short-wavelength perturbations when they
are very thin and at any reasonable mismatch stress level.
Our final remark concerns two-dimensional surfaces and
corresponding surface energy anisotropies γt(hx, hy) of
the generic form (4) (where contribution in the y-direction
is additive, as is commonly assumed). We conjecture that,
if the surface orientation (of a thick film) is still one of
the high-symmetry crystallographic orientations, such as
[001] or [111], then the effect of such in-plane anisotropy
is nonlinear and thus the latter anisotropy will not affect
the results. This can be qualitatively understood, for
instance, by following the analysis leading to eq. (15) in
ref. [8] while accounting for the nonlinear nature of the
mixed derivative term in eq. (2) and the form of eq. (3),
in this letter. Due to the complexity of formulation and
derivation, the exact proof is beyond the scope of this
note. The results are also unchanged if the surface is two
dimensional but the in-plane anisotropy is zero.
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