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Motivations

Molecular Beam Epitaxy (MBE) is widely used to grow various
semiconductor or metal nanostructures (quantum dots, wells, wires,
etc.)

If the substrate on which the crystal grows is a vicinal (misoriented)
surface, then for metals or semiconductors the growth proceeds in
step-flow mode

Anisotropy of step energy, or tension (a dependence on orientation)
has been shown to have a major effect on step morphology (Y.
Saito and M. Uwaha, 1996). However, these authors considered
weak anisotropy only. In this work, analysis is extended to strong
anisotropies.
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Introduction, part I
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Introduction, part II

(From: J. Krug (2004))

Let the step profile be z = h(x , t)
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Introduction, part III

(From: C. Misbah et al. (2010))
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Example system

MBE growth of refractory metals (niobium, molybdenum, tantalum,
tungsten, and rhenium)
These metals are extraordinarily resistant to heat and wear

(Growth of Nb on Nb(001) substrates; from: M. Ondrejcek et al. (2002))

Notice distinct faceting of steps (light lines: individual steps; dark lines:

step bunches)
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Formulation of one-sided model, part I

(From: C. Misbah et al. (2010); adapted from J. Krug (2004))
Let C : atomic concentration; z = h(x , t): the step profile

D∇2C − τ−1C = −F ,

z = h(x , t) :

C = Ceq

[
1 +

Ω

kB T̄

{
β̃ − δ̄(|α|)

(
κ2

2
+
κss
κ

)}
κ

]
z →∞ : C = τF

vn ≡ ht cos θ = ΩD
(
∇C|z=h(x,t) · n

)
, cos θ =

(
1 + h2

x

)−1/2
,

n = (−hx cos θ, cos θ) , κ =
−hxx

(1 + h2
x)3/2

,
∂

∂s
= (cos θ)

∂

∂x
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Formulation of one-sided model, part II

β = β0(1 + α cos 4θ), (good model for fcc-crystals)

β̃ ≡ β + βθθ = β0(1− 15α cos 4θ), |α| ≥ 1/15

α is the anisotropy strength, δ̄ is the regularization parameter

z = h(x , t) : C = Ceq

[
1 +

Ω

kB T̄

{
β̃ − δ̄(|α|)

(
κ2

2
+
κss
κ

)}
κ

]
This b.c. has the highly nonlinear regularization term; κ is the step
curvature.

Reg. term IS REQUIRED when the step energy β is strongly anisotropic
and therefore the step stiffness β̃ < 0 for some orientations: |α| ≥ 1/15

Negativity of β̃ for some θ signals that the corner has formed at this orientation on the

equilibrium crystal shape; in the dynamical situation, this corresponds to the evolution

PDE becoming backward parabolic; thus it is ill-posed and unstable to

short-wavelength perturbations. Inclusion of the regularization term restores

well-posedness of the evolution PDE by imposing small radius of curvature at the

corners; see A.A. Golovin et al. (1998)
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Saito-Uwaha model for weak anisotropy (β̃ > 0 ∀ θ), part I

Longwave perturbations (0 < k < kc) are known to be the most
dangerous in the isotropic and weakly anisotropic cases

x = ε−1/2X , t = T0 +
T2

ε2
,

h = εH1(X ,T0,T2) + ε2H2(X ,T0,T2) + ...,

C = C0(X , z ,T0,T2) + εC1(X , z ,T0,T2) + ε2C2(X , z ,T0,T2)...

Since h is assumed O(ε), that expansion results in the weakly nonlinear
evolution PDE for the step profile: the weakly anisotropic
Kuramoto-Sivashinsky equation (waKS) (Y. Saito and M. Uwaha, 1996)

ht = −1

2
(1− 8Ah2

x)hxx −
3

8
hxxxx +

1

2
h2
x ,

A = αsuε
2, αsu ≥ −1/2⇔ |α| ≤ 1/15⇔ β̃ > 0

The PDE we derive is valid for large step deformations and for strong
anisotropies, and it is more nonlinear and complicated than the waKS
equation
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Saito-Uwaha model for weak anisotropy, part II

From: Y. Saito and M. Uwaha (1996)
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Saito-Uwaha model for weak anisotropy, part III

From: Y. Saito and M. Uwaha (1996)

Implicit in the derivation is that straight step is long-wave unstable when:

F > Fc = Feq

(
1 +

2Ωβ0

xskB T̄

)
> Feq, since β0 > 0; here xs = (Dτ)1/2

,

Feq = Ceq/τ : the equilibrium flux (sufficient for steady growth of
straight step)

Notice independence of Fc on anisotropy strength !
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Our model for strong anisotropy (β̃ < 0 for some θ), part I

Introduce “stretched” variable X , the “fast” time T0 and the hierarchy of
“slow” times T2, T3, ...:

x =
X

ε
, t = T0 +

T2

ε2
+

T3

ε3
+ ..., where ε� 1

Also expand the concentration in powers of ε:

C = C0(X , z ,T0,T2, ...) + ε2C2(X , z ,T0,T2, ...) + ...

Note: h(X,T) is not expanded, meaning large step deformations are
allowed: h(x , t) = O(1)

Substitute variables and expansions, collect the like powers of ε and
obtain a sequence of coupled, exactly solvable problems at ε0, ε2, ε4, ...

At each order, a problem is an ODE boundary value problem: a 2nd-order
ODE in z subject to two b.c.’s, one at z →∞ and another at z = h(X )
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Our model, part II: Derivation of the evolution PDE

Solve the BVP ODE problems at orders ε0, ε2, ε3, ε4

Transfer to the reference frame moving in the z > 0 - direction with
the speed of straight (unperturbed) step: hT0 = Ωxs (F − Feq),

where Feq = Ceq/τ is the flux at the equilibrium, and xs =
√
τD is

the diffusion length

Combine the time derivatives:

ht = ε2hT2 + ε3hT3 + ε4hT4

Introduce the original variable x ; this eliminates ε2, ε3 and ε4 from
the PDE

Make the PDE dimensionless by chosing xs as the length scale and
τ as the time scale
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Our model, part III: Evolution PDE

Keeping same notations for dimensionless variables:

ht = (m1 −m2) hxx −m3hxxxx +
m1 ∓m2

2
hxxh2

x +

m1

(
3

2
h4
x − h2

x

)
∓m2hxxxhx , (1)

m1 =
1

2
(Feq − F ) Ωτ, m2 =

FeqΩ2β0τ

kB T̄ xs
(15α−1), m3 =

FeqΩ2τδ(|α|)
kB T̄ x3

s

> 0

m1 measures the deviation of the flux from the equilibrium value, m2 measures the

strength of the anisotropy, and m3 measures the effect of the regularization (corner

rounding)

+ : α ≥ 1/15

− : α ≤ −1/15 [will choose + ⇔ α ≥ 1/15 in the analysis (stiffness β̃ is

minimum in the growth direction θ = 0)]

Mikhail Khenner The effects of anisotropic step energy (tension)...



Our model, part IV: Analysis of the evolution PDE

Straight step is long-wave unstable, iff

m1 −m2 < 0 ⇔ F > Fc = Feq

(
1− 2Ωβ0

xskB T̄
(15α− 1)

)

kc =
√

(m2 −m1)/m3, kmax = kc/
√

2, ωmax = (m2 −m1)2/4m3

Let α ≥ 1/15, then:

Fc < Feq

Fc = 0 at α = αc = 1/15 + r , where r = xskB T̄/30Ωβ0. Thus at α > αc any
flux destabilizes the step. r ∼ 0.01− 0.1

At F > Feq > Fc the step is unstable and grows (in the frame moving with
non-zero speed hT0

); similar to isotropic and weakly anisotropic cases

At Fc < F < Feq , the step is unstable and it grows; (no analog in isotropic and

weakly anisotropic cases) (hT0
= 0)
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Computational results for strongly anisotropic PDE, part I

Random initial condition h(x , 0) = 1 + noise on the large domain (0 ≤ x ≤ 100λmax ),
periodic b.c.’s

α = 1.6, F/Feq = 2; time increases from the bottom to the top

A quasi-steady state emerges: Hills and valleys ceased coarsening, but the

long-wavelength median (envelope) perpetually coarsens
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Computational results for strongly anisotropic PDE, part II

The quasi-steady state

Coarsening of the long-wavelength median step position; time increases from the

bottom to the top
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Computational results for strongly anisotropic PDE, part III

Coarsening of the hill-and-valley structure for various α values

Step speed vs. the time for various α values
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Summary

A longwave PDE is formulated for the description of the strongly
anisotropic step dynamics within the framework of a one-sided
model

The linear stability of a step depends not only on the strength of
the adatoms flux from the terrace to the step, but also on the
strength of the step energy anisotropy parameter α

The critical atomic flux from the terrace that destabilizes the step is
less than the equilibrium value, and it is even possible to destabilize
the step by anisotropy alone by taking α large enough. That is, the
flux and the anisotropy complement each other in destabilizing the
step.

THE END
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